...one of the most highly
regarded and expertly designed C++ library projects in the
world.

— Herb Sutter and Andrei
Alexandrescu, C++
Coding Standards

- Class rational synopsis
- Rationale
- Background
- Integer Type Requirements
- Interface
- Utility functions
- Constructors
- Arithmetic operations
- Input and Output
- In-place assignment
- Conversions
- Numerator and Denominator
- Performance
- Exceptions
- Internal representation
- Design notes
- References
- History and Acknowledgements

#include <boost/rational.hpp> namespace boost { template <typename I> I gcd(I n, I m); template <typename I> I lcm(I n, I m); class bad_rational; template<typename I> class rational { typedef I int_type; // Constructors rational(); // Zero rational(I n); // Equal to n/1 rational(I n, I d); // General case (n/d) // Normal copy constructors and assignment operators // Assignment from I rational& operator=(I n); // Assign in place rational& assign(I n, I d); // Representation I numerator() const; I denominator() const; // In addition to the following operators, all of the "obvious" derived // operators are available - see operators.hpp // Arithmetic operators rational& operator+= (const rational& r); rational& operator-= (const rational& r); rational& operator*= (const rational& r); rational& operator/= (const rational& r); // Arithmetic with integers rational& operator+= (I i); rational& operator-= (I i); rational& operator*= (I i); rational& operator/= (I i); // Increment and decrement const rational& operator++(); const rational& operator--(); // Operator not bool operator!() const; // Comparison operators bool operator< (const rational& r) const; bool operator== (const rational& r) const; // Comparison with integers bool operator< (I i) const; bool operator> (I i) const; bool operator== (I i) const; } // Unary operators template <typename I> rational<I> operator+ (const rational<I>& r); template <typename I> rational<I> operator- (const rational<I>& r); // Reversed order operators for - and / between (types convertible to) I and rational template <typename I, typename II> inline rational<I> operator- (II i, const rational<I>& r); template <typename I, typename II> inline rational<I> operator/ (II i, const rational<I>& r); // Absolute value template <typename I> rational<I> abs (const rational<I>& r); // Input and output template <typename I> std::istream& operator>> (std::istream& is, rational<I>& r); template <typename I> std::ostream& operator<< (std::ostream& os, const rational<I>& r); // Type conversion template <typename T, typename I> T rational_cast (const rational<I>& r);

The C++ Standard Library extends the range of numeric types available by
providing the **complex** type.

This library provides a further numeric type, the **rational** numbers.

The **rational** class is actually a implemented as a template, in a
similar manner to the standard **complex** class.

Computers cannot represent mathematical concepts exactly - there are always compromises to be made. Machine integers have a limited range of values (often 32 bits), and machine approximations to reals are limited in precision. The compromises have differing motivations - machine integers allow exact calculation, but with a limited range, whereas machine reals allow a much greater range, but at the expense of exactness.

The rational number class provides an alternative compromise. Calculations with rationals are exact, but there are limitations on the available range. To be precise, rational numbers are exact as long as the numerator and denominator (which are always held in normalized form, with no common factors) are within the range of the underlying integer type. When values go outside these bounds, overflow occurs and the results are undefined.

The rational number class is a template to allow the programmer to control the overflow behaviour somewhat. If an unlimited precision integer type is available, rational numbers based on it will never overflow and will provide exact calculations in all circumstances.

The rational type takes a single template type parameter I. This is the
*underlying integer type* for the rational type. Any of the built-in
integer types provided by the C++ implementation are supported as values for
I. User-defined types may also be used, but users should be aware that the
performance characteristics of the rational class are highly dependent upon
the performance characteristics of the underlying integer type (often in
complex ways - for specific notes, see the Performance
section below). Note: Should the boost library support an unlimited-precision
integer type in the future, this type will be fully supported as the underlying
integer type for the rational class.

A user-defined integer type which is to be used as the underlying integer type for the rational type must be a model of the following concepts.

- Assignable
- Default Constructible
- Equality Comparable
- LessThan Comparable

Furthermore, I must be an *integer-like* type, that is the following
expressions must be valid for any two values n and m of type I, with the
"expected" semantics.
`
`

- n + m
- n - m
- n * m
- n / m (must truncate, and n/m must be positive if n and m are positive)
- n % m (n%m must be positive if n and m are positive)
- Assignment versions of the above
- +n, -n

There must be *zero* and *one* values available for I. It should
be possible to generate these as `I(0)` and `I(1)`,
respectively. *Note:* This does not imply that I needs to have an
implicit conversion from integer - an `explicit` constructor is
adequate.

It is valid for I to be an unsigned type. In that case, the derived rational class will also be unsigned. Underflow behaviour of subtraction, where results would otherwise be negative, is unpredictable in this case.

- The implementation of rational_cast<T>(rational<I>) relies on the ability to static_cast from type I to type T, and on the expression x/y being valid for any two values of type T.
- The input and output operators rely on the existence of corresponding input and output operators for type I.

gcd(n, m) |
The greatest common divisor of n and m | ||

lcm(n, m) |
The least common multiple of n and m |

*Note:* In the future, these functions may be moved into a separate
boost utility library.

This implies that the following statements are valid:

I n, d; rational<I> zero; rational<I> r1(n); rational<I> r2(n, d);

The single-argument constructor is *not* declared as explicit, so
there is an implicit conversion from the underlying integer type to the
rational type.

+ += - -= * *= / /= ++ -- (both prefix and postfix) == != < > <= >=

rational r(22,7); double nearly_pi = boost::rational_cast<double>(r);The

*Implementation note:*

The actual implementation of the rational_cast function is

template <typename Float, typename Int> Float rational_cast(const rational<Int>& src) { return static_cast<Float>(src.numerator()) / src.denominator(); }Programs should not be written to depend upon this implementation, however.

These functions allow user code to implement any additional required functionality. In particular, it should be noted that there may be cases where the above rational_cast operation is inappropriate - particularly in cases where the rational type is based on an unlimited-precision integer type. In this case, a specially-written user-defined conversion to floating point will be more appropriate.

No attempt will be made to provide detailed performance guarantees for the operations available on the rational class. While it is possible for such guarantees to be provided (in a similar manner to the performance specifications of many of the standard library classes) it is by no means clear that such guarantees will be of significant value to users of the rational class. Instead, this section will provide a general discussion of the performance characteristics of the rational class.

There now follows a list of the fundamental operations defined in the <boost/rational.hpp> header and an informal description of their performance characteristics. Note that these descriptions are based on the current implementation, and as such should be considered subject to change.

- Construction of a rational is essentially just two constructions of the underlying integer type, plus a normalization.
- Increment and decrement operations are essentially as cheap as addition and subtraction on the underlying integer type.
- (In)equality comparison is essentially as cheap as the same operation on the underlying integer type.
- I/O operations are not cheap, but their performance is essentially dominated by the I/O time itself.
- The gcd operation is essentially a repeated modulus operation. The only other significant operations are construction, assignment, and comparison against zero of IntType values. These latter operations are assumed to be trivial in comparison with the modulus operation.
- The lcm operation is essentially a gcd, plus a couple of multiplications and divisions.
- The addition and subtraction operations are complex. They will require approximately two gcd operations, 3 divisions, 3 multiplications and an addition on the underlying integer type.
- The multiplication and division operations require two gcd operations, two multiplications, and four divisions.
- The comparison operations require two gcd operations, two multiplications, four divisions and a comparison in the worst case. On the assumption that IntType comparisons are the cheapest of these operations (and that comparisons agains zero may be cheaper still), these operations have a number of special case optimisations to reduce the overhead where possible. In particular, equality and inequality tests are only as expensive as two of the equivalent tests on the underlying integer type.
- The final fundamental operation is normalizing a rational. This operation is performed whenever a rational is constructed (and assigned in place). All other operations are careful to maintain rationals in a normalized state. Normalization costs the equivalent of one gcd and two divisions.

Note that it is implicitly assumed that operations on IntType have the "usual" performance characteristics - specifically, that the expensive operations are multiplication, division, and modulo, with addition and subtraction being significantly cheaper. It is assumed that construction (from integer literals 0 and 1, and copy construction) and assignment are relatively cheap, although some effort is taken to reduce unnecessary construction and copying. It is also assumed that comparison (particularly against zero) is cheap.

Integer types which do not conform to these assumptions will not be particularly effective as the underlying integer type for the rational class. Specifically, it is likely that performance will be severely sub-optimal.

In addition, if operations on the underlying integer type can generate exceptions, these will be propogated out of the operations on the rational class. No particular assumptions should be made - it is only safe to assume that any exceptions which can be thrown by the integer class could be thrown by any rational operation. In particular, the rational constructor may throw exceptions from the underlying integer type as a result of the normalization step. The only exception to this rule is that the rational destructor will only throw exceptions which can be thrown by the destructor of the underlying integer type (usually none).

Internally, rational numbers are stored as a pair (numerator, denominator) of integers (whose type is specified as the template parameter for the rational type). Rationals are always stored in fully normalized form (ie, gcd(numerator,denominator) = 1, and the denominator is always positive).

Areas where this minimality consideration has been relaxed are in providing
input/output operators, and rational_cast. The former is generally
uncontroversial. However, there are a number of cases where rational_cast is
not the best possible method for converting a rational to a floating point
value (notably where user-defined types are involved). In those cases, a
user-defined conversion can and should be implemented. There is no need
for such an operation to be named rational_cast, and so the rational_cast
function does *not* provide the necessary infrastructure to allow for
specialisation/overloading.

Unfortunately, the C++ standard does not offer such a class (and neither
does boost, at the present time). It is therefore likely that the rational
number class will in many cases be used with limited-precision integer types,
such as the built-in `int` type.

When used with a limited precision integer type, the rational class suffers from many of the precision issues which cause difficulty with floating point types. While it is likely that precision issues will not affect simple uses of the rational class, users should be aware that such issues exist.

As a simple illustration of the issues associated with limited precision
integers, consider a case where the C++ `int` type is a 32-bit signed
representation. In this case, the smallest possible positive
rational<int> is `1/0x7FFFFFFF`. In other words, the
"granularity" of the rational<int> representation around zero is
approximately 4.66e-10. At the other end of the representable range, the
largest representable rational<int> is `0x7FFFFFFF/1`, and the
next lower representable rational<int> is `0x7FFFFFFE/1`. Thus,
at this end of the representable range, the granularity ia 1. This type of
magnitude-dependent granularity is typical of floating point representations.
However, it does not "feel" natural when using a rational number class.

It is up to the user of a rational type based on a limited-precision integer type to be aware of, and code in anticipation of, such issues.

The key issue with any conversion function from a floating point value is how to handle the loss of precision which is involved in floating point operations. To provide a concrete example, consider the following code:

// These two values could in practice be obtained from user input, // or from some form of measuring instrument. double x = 1.0; double y = 3.0; double z = x/y; rational<I> r = rational_from_double(z);

The fundamental question is, precisely what rational should r be? A naive answer is that r should be equal to 1/3. However, this ignores a multitude of issues.

In the first instance, z is not exactly 1/3. Because of the limitations of floating point representation, 1/3 is not exactly representable in any of the common representations for the double type. Should r therefore not contain an (exact) representation of the actual value represented by z? But will the user be happy with a value of 33333333333333331/100000000000000000 for r?

Before even considering the above issue, we have to consider the accuracy of the original values, x and y. If they came from an analog measuring instrument, for example, they are not infinitely accurate in any case. In such a case, a rational representation like the above promises far more accuracy than there is any justification for.

All of this implies that we should be looking for some form of "nearest simple fraction". Algorithms to determine this sort of value do exist. However, not all applications want to work like this. In other cases, the whole point of converting to rational is to obtain an exact representation, in order to prevent accuracy loss during a series of calculations. In this case, a completely precise representation is required, regardless of how "unnatural" the fractions look.

With these conflicting requirements, there is clearly no single solution which will satisfy all users. Furthermore, the algorithms involved are relatively complex and specialised, and are best implemented with a good understanding of the application requirements. All of these factors make such a function unsuitable for a general-purpose library such as this.

The first issue is that, in order to locate the appropriate implementation of abs(IntType) in the case where IntType is a user-defined type in a user namespace, Koenig lookup is required. Not all compilers support Koenig lookup for functions at the current time. For such compilers, clumsy workarounds, which require cooperation from the user of the rational class, are required to make things work.

The second, and potentially more serious, issue is that for non-standard
built-in integer types (for example, 64-bit integer types such as
*long long* or *__int64*), there is no guarantee that the vendor
has supplied a built in abs() function operating on such types. This is a
quality-of-implementation issue, but in practical terms, vendor support for
types such as *long long* is still very patchy.

As a consequence of these issues, it does not seem worth implementing abs(rational<IntType>) in terms of abs(IntType). Instead, a simple implementation with an inline implementation of abs() is used:

template <typename IntType> inline rational<IntType> abs(const rational<IntType>& r) { if (r.numerator() >= IntType(0)) return r; return rational<IntType>(-r.numerator(), r.denominator()); }

The same arguments imply that where the absolute value of an IntType is required elsewhere, the calculation is performed inline.

- The rational number header itself: rational.hpp
- Some example code: rational_example.cpp
- The regression test: rational_test.cpp

David Abrahams contributed helpful feedback on the documentation.

A long discussion of the merits of providing a conversion from floating
point to rational took place on the boost list in November 2000. Key
contributors included Reggie Seagraves, Lutz Kettner and Daniel Frey (although
most of the boost list seemed to get involved at one point or another!). Even
though the end result was a decision *not* to implement anything, the
discussion was very valuable in understanding the issues.

Stephen Silver contributed useful experience on using the rational class with a user-defined integer type.

Nickolay Mladenov provided the current implementation of operator+= and operator-=.

Discussion of the issues surrounding Koenig lookup and std::swap, as covered in the rationale sections on Absolute Value and Swap Operation above, took place on the boost list in January 2001.

Revised February 5, 2001

© Copyright Paul Moore 1999-2001. Permission to copy, use, modify, sell and distribute this document is granted provided this copyright notice appears in all copies. This document is provided "as is" without express or implied warranty, and with no claim as to its suitability for any purpose.