Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

This is the documentation for an old version of Boost. Click here to view this page for the latest version.

boost/interprocess/containers/string.hpp

//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/interprocess for documentation.
//
//////////////////////////////////////////////////////////////////////////////
//
// This file comes from SGI's string file. Modified by Ion Gaztanaga 2004-2008
// Renaming, isolating and porting to generic algorithms. Pointer typedef 
// set to allocator::pointer to allow placing it in shared memory.
//
///////////////////////////////////////////////////////////////////////////////
// Copyright (c) 1994
// Hewlett-Packard Company
// 
// Permission to use, copy, modify, distribute and sell this software
// and its documentation for any purpose is hereby granted without fee,
// provided that the above copyright notice appear in all copies and
// that both that copyright notice and this permission notice appear
// in supporting documentation.  Hewlett-Packard Company makes no
// representations about the suitability of this software for any
// purpose.  It is provided "as is" without express or implied warranty.

#ifndef BOOST_INTERPROCESS_STRING_HPP
#define BOOST_INTERPROCESS_STRING_HPP

#include <boost/interprocess/detail/config_begin.hpp>
#include <boost/interprocess/detail/workaround.hpp>

#include <boost/interprocess/detail/workaround.hpp>
#include <boost/interprocess/interprocess_fwd.hpp>
#include <boost/interprocess/detail/utilities.hpp>
#include <boost/interprocess/detail/algorithms.hpp>
#include <boost/interprocess/detail/min_max.hpp>
#include <boost/interprocess/detail/iterators.hpp>
#include <boost/interprocess/detail/version_type.hpp>
#include <boost/interprocess/allocators/allocation_type.hpp>
#include <boost/interprocess/detail/mpl.hpp>
#include <boost/interprocess/detail/move.hpp>
#include <boost/static_assert.hpp>

#include <functional>
#include <string>
#include <stdexcept>      
#include <utility>  
#include <iterator>
#include <memory>
#include <algorithm>
#include <iosfwd>
#include <ios>
#include <locale>
#include <cstddef>
#include <climits>
#include <boost/interprocess/detail/type_traits.hpp>
#include <boost/detail/no_exceptions_support.hpp>
#include <boost/type_traits/has_trivial_destructor.hpp>

namespace boost {
namespace interprocess {
namespace detail {

/// @cond
// ------------------------------------------------------------
// Class basic_string_base.  

// basic_string_base is a helper class that makes it it easier to write
// an exception-safe version of basic_string.  The constructor allocates,
// but does not initialize, a block of memory.  The destructor
// deallocates, but does not destroy elements within, a block of
// memory.  The destructor assumes that the memory either is the internal buffer, 
// or else points to a block of memory that was allocated using _String_base's 
// allocator and whose size is this->m_storage.
template <class A>
class basic_string_base
{
   basic_string_base();
 public:
   typedef A allocator_type;
   //! The stored allocator type
   typedef allocator_type                          stored_allocator_type;
   typedef typename A::pointer     pointer;
   typedef typename A::value_type  value_type;
   typedef typename A::size_type   size_type;

   basic_string_base(const allocator_type& a)
      : members_(a)
   {  init(); }

   basic_string_base(const allocator_type& a, std::size_t n)
      : members_(a)
   {  
      this->init(); 
      this->allocate_initial_block(n);
   }

   #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
   basic_string_base(const detail::moved_object<basic_string_base<A> >& b)
      :  members_(b.get().members_)
   {  
      init();
      this->swap(b.get()); 
   }
   #else
   basic_string_base(basic_string_base<A> && b)
      :  members_(b.members_)
   {  
      init();
      this->swap(b); 
   }
   #endif

   ~basic_string_base() 
   {  
      this->deallocate_block(); 
      if(!this->is_short()){
         static_cast<long_t*>(static_cast<void*>(&this->members_.m_repr.r))->~long_t();
      }
   }

   private:

   //This is the structure controlling a long string 
   struct long_t
   {
      size_type      is_short  : 1;
      size_type      length    : (sizeof(size_type)*CHAR_BIT - 1);
      size_type      storage;
      pointer        start;

      long_t()
      {}

      long_t(const long_t &other)
      {
         this->is_short = other.is_short;
         length   = other.length;
         storage  = other.storage;
         start    = other.start;
      }

      long_t &operator =(const long_t &other)
      {
         this->is_short = other.is_short;
         length   = other.length;
         storage  = other.storage;
         start    = other.start;
         return *this;
      }
   };

   //This basic type should have the same alignment as long_t
//iG   typedef typename type_with_alignment<detail::alignment_of<long_t>::value>::type
//      long_alignment_type;
   typedef void *long_alignment_type;
   BOOST_STATIC_ASSERT((detail::alignment_of<long_alignment_type>::value % 
                        detail::alignment_of<long_t>::value) == 0);


   //This type is the first part of the structure controlling a short string
   //The "data" member stores
   struct short_header
   {
      unsigned char  is_short  : 1;
      unsigned char  length    : (CHAR_BIT - 1);
   };

   //This type has the same alignment and size as long_t but it's POD
   //so, unlike long_t, it can be placed in a union
   struct long_raw_t
   {
      long_alignment_type  a;
      unsigned char        b[sizeof(long_t) - sizeof(long_alignment_type)];
   };

   protected:
   static const size_type  MinInternalBufferChars = 8;
   static const size_type  AlignmentOfValueType =
      alignment_of<value_type>::value;
   static const size_type  ShortDataOffset =
      detail::ct_rounded_size<sizeof(short_header),  AlignmentOfValueType>::value;
   static const size_type  ZeroCostInternalBufferChars =
      (sizeof(long_t) - ShortDataOffset)/sizeof(value_type);
   static const size_type  UnalignedFinalInternalBufferChars = 
      (ZeroCostInternalBufferChars > MinInternalBufferChars) ?
                ZeroCostInternalBufferChars : MinInternalBufferChars;

   struct short_t
   {
      short_header   h; 
      value_type     data[UnalignedFinalInternalBufferChars];
   };

   union repr_t
   {
      long_raw_t  r;
      short_t     s;

      short_t &short_repr() const
      {  return *const_cast<short_t *>(&s);  }

      long_t &long_repr() const
      {  return *static_cast<long_t*>(const_cast<void*>(static_cast<const void*>(&r)));  }
   };

   struct members_holder
      :  public A
   {
      members_holder(const A &a)
         :  A(a)
      {}

      repr_t m_repr;
   } members_;

   const A &alloc() const
   {  return members_;  }

   A &alloc()
   {  return members_;  }

   static const size_type InternalBufferChars = (sizeof(repr_t) - ShortDataOffset)/sizeof(value_type);

   private:

   static const size_type MinAllocation = InternalBufferChars*2;

   protected:
   bool is_short() const
   {  return static_cast<bool>(this->members_.m_repr.s.h.is_short != 0);  }

   void is_short(bool yes)
   {  
      if(yes && !this->is_short()){
         static_cast<long_t*>(static_cast<void*>(&this->members_.m_repr.r))->~long_t();
      }
      else{
         new(static_cast<void*>(&this->members_.m_repr.r))long_t();
      }
      this->members_.m_repr.s.h.is_short = yes;
   }

   private:
   void init()
   {
      this->members_.m_repr.s.h.is_short = 1;
      this->members_.m_repr.s.h.length   = 0;
   }

   protected:

   typedef detail::integral_constant<unsigned, 1>      allocator_v1;
   typedef detail::integral_constant<unsigned, 2>      allocator_v2;
   typedef detail::integral_constant<unsigned,
      boost::interprocess::detail::version<A>::value> alloc_version;

   std::pair<pointer, bool>
      allocation_command(allocation_type command,
                         size_type limit_size, 
                         size_type preferred_size,
                         size_type &received_size, pointer reuse = 0)
   {
      if(this->is_short() && (command & (expand_fwd | expand_bwd)) ){
         reuse = pointer(0);
         command &= ~(expand_fwd | expand_bwd);
      }
      return this->allocation_command
         (command, limit_size, preferred_size, received_size, reuse, alloc_version());
   }

   std::pair<pointer, bool>
      allocation_command(allocation_type command,
                         size_type limit_size, 
                         size_type preferred_size,
                         size_type &received_size,
                         const pointer &reuse,
                         allocator_v1)
   {
      (void)limit_size;
      (void)reuse;
      if(!(command & allocate_new))
         return std::pair<pointer, bool>(0, 0);
      received_size = preferred_size;
      return std::make_pair(this->alloc().allocate(received_size), false);
   }

   std::pair<pointer, bool>
      allocation_command(allocation_type command,
                         size_type limit_size, 
                         size_type preferred_size,
                         size_type &received_size,
                         pointer reuse,
                         allocator_v2)
   {
      return this->alloc().allocation_command(command, limit_size, preferred_size, 
                                              received_size, reuse);
   }

   size_type next_capacity(size_type additional_objects) const
   {  return get_next_capacity(this->alloc().max_size(), this->priv_storage(), additional_objects);  }

   void deallocate(pointer p, std::size_t n) 
   {  
      if (p && (n > InternalBufferChars))
         this->alloc().deallocate(p, n);
   }

   void construct(pointer p, const value_type &value = value_type())
   {  new(detail::get_pointer(p)) value_type(value);   }

   void destroy(pointer p, size_type n)
   {
      for(; n--; ++p)
         detail::get_pointer(p)->~value_type();
   }

   void destroy(pointer p)
   {  detail::get_pointer(p)->~value_type(); }

   void allocate_initial_block(std::size_t n)
   {
      if (n <= this->max_size()) {
         if(n > InternalBufferChars){
            size_type new_cap = this->next_capacity(n);
            pointer p = this->allocation_command(allocate_new, n, new_cap, new_cap).first;
            this->is_short(false);
            this->priv_addr(p);
            this->priv_size(0);
            this->priv_storage(new_cap);
         }
      }
      else
         throw_length_error();
   }

   void deallocate_block() 
   {  this->deallocate(this->priv_addr(), this->priv_storage());  }
      
   std::size_t max_size() const
   {  return this->alloc().max_size() - 1; }

   // Helper functions for exception handling.
   void throw_length_error() const
   {  throw(std::length_error("basic_string"));  }

   void throw_out_of_range() const
   {  throw(std::out_of_range("basic_string"));  }

   protected:
   size_type priv_capacity() const
   { return this->priv_storage() - 1; }

   pointer priv_addr() const
   {  return this->is_short() ? pointer(&this->members_.m_repr.short_repr().data[0]) : this->members_.m_repr.long_repr().start;  }

   void priv_addr(pointer addr)
   {  this->members_.m_repr.long_repr().start = addr;  }

   size_type priv_storage() const
   {  return this->is_short() ? InternalBufferChars : this->members_.m_repr.long_repr().storage;  }

   void priv_storage(size_type storage)
   {  
      if(!this->is_short())
         this->members_.m_repr.long_repr().storage = storage;
   }

   size_type priv_size() const
   {  return this->is_short() ? this->members_.m_repr.short_repr().h.length : this->members_.m_repr.long_repr().length;  }

   void priv_size(size_type sz)
   {  
      if(this->is_short())
         this->members_.m_repr.s.h.length = (unsigned char)sz;
      else
         this->members_.m_repr.long_repr().length = static_cast<typename A::size_type>(sz);
   }

   void swap(basic_string_base& other) 
   {
      if(this->is_short()){
         if(other.is_short()){
            std::swap(this->members_.m_repr, other.members_.m_repr);
         }
         else{
            repr_t copied(this->members_.m_repr);
            this->members_.m_repr.long_repr() = other.members_.m_repr.long_repr();
            other.members_.m_repr = copied;
         }
      }
      else{
         if(other.is_short()){
            repr_t copied(other.members_.m_repr);
            other.members_.m_repr.long_repr() = this->members_.m_repr.long_repr();
            this->members_.m_repr = copied;
         }
         else{
            std::swap(this->members_.m_repr.long_repr(), other.members_.m_repr.long_repr());
         }
      }

      allocator_type & this_al = this->alloc(), &other_al = other.alloc();
      if(this_al != other_al){
         detail::do_swap(this_al, other_al);
      }
   }
};
/// @endcond

}  //namespace detail {


//! The basic_string class represents a Sequence of characters. It contains all the 
//! usual operations of a Sequence, and, additionally, it contains standard string 
//! operations such as search and concatenation.
//!
//! The basic_string class is parameterized by character type, and by that type's 
//! Character Traits.
//! 
//! This class has performance characteristics very much like vector<>, meaning, 
//! for example, that it does not perform reference-count or copy-on-write, and that
//! concatenation of two strings is an O(N) operation. 
//! 
//! Some of basic_string's member functions use an unusual method of specifying positions 
//! and ranges. In addition to the conventional method using iterators, many of 
//! basic_string's member functions use a single value pos of type size_type to represent a 
//! position (in which case the position is begin() + pos, and many of basic_string's 
//! member functions use two values, pos and n, to represent a range. In that case pos is 
//! the beginning of the range and n is its size. That is, the range is 
//! [begin() + pos, begin() + pos + n). 
//! 
//! Note that the C++ standard does not specify the complexity of basic_string operations. 
//! In this implementation, basic_string has performance characteristics very similar to 
//! those of vector: access to a single character is O(1), while copy and concatenation 
//! are O(N).
//! 
//! In this implementation, begin(), 
//! end(), rbegin(), rend(), operator[], c_str(), and data() do not invalidate iterators.
//! In this implementation, iterators are only invalidated by member functions that
//! explicitly change the string's contents. 
template <class CharT, class Traits, class A> 
class basic_string
   :  private detail::basic_string_base<A> 
{
   /// @cond
   private:
   typedef detail::basic_string_base<A> base_t;
   static const typename base_t::size_type InternalBufferChars = base_t::InternalBufferChars;

   protected:
   // A helper class to use a char_traits as a function object.

   template <class Tr>
   struct Eq_traits
      : public std::binary_function<typename Tr::char_type,
                                    typename Tr::char_type,
                                    bool>
   {
      bool operator()(const typename Tr::char_type& x,
                      const typename Tr::char_type& y) const
         { return Tr::eq(x, y); }
   };

   template <class Tr>
   struct Not_within_traits
      : public std::unary_function<typename Tr::char_type, bool>
   {
      typedef const typename Tr::char_type* Pointer;
      const Pointer m_first;
      const Pointer m_last;

      Not_within_traits(Pointer f, Pointer l) 
         : m_first(f), m_last(l) {}

      bool operator()(const typename Tr::char_type& x) const 
      {
         return std::find_if(m_first, m_last, 
                        std::bind1st(Eq_traits<Tr>(), x)) == m_last;
      }
   };
   /// @endcond

   public:
   //! The allocator type
   typedef A                                       allocator_type;
   //! The stored allocator type
   typedef allocator_type                          stored_allocator_type;
   //! The type of object, CharT, stored in the string
   typedef CharT                                   value_type;
   //! The second template parameter Traits
   typedef Traits                                  traits_type;
   //! Pointer to CharT
   typedef typename A::pointer                     pointer;
   //! Const pointer to CharT 
   typedef typename A::const_pointer               const_pointer;
   //! Reference to CharT 
   typedef typename A::reference                   reference;
   //! Const reference to CharT 
   typedef typename A::const_reference             const_reference;
   //! An unsigned integral type
   typedef typename A::size_type                   size_type;
   //! A signed integral type
   typedef typename A::difference_type             difference_type;
   //! Iterator used to iterate through a string. It's a Random Access Iterator
   typedef pointer                                 iterator;
   //! Const iterator used to iterate through a string. It's a Random Access Iterator
   typedef const_pointer                           const_iterator;
   //! Iterator used to iterate backwards through a string
   typedef std::reverse_iterator<iterator>       reverse_iterator;
   //! Const iterator used to iterate backwards through a string
   typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
   //! The largest possible value of type size_type. That is, size_type(-1). 
   static const size_type npos;

   /// @cond
   private:
   typedef constant_iterator<CharT, difference_type> cvalue_iterator;
   /// @endcond

   public:                         // Constructor, destructor, assignment.

   struct reserve_t {};

   basic_string(reserve_t, std::size_t n,
               const allocator_type& a = allocator_type())
      : base_t(a, n + 1)
   { this->priv_terminate_string(); }

   //! <b>Effects</b>: Constructs a basic_string taking the allocator as parameter.
   //! 
   //! <b>Throws</b>: If allocator_type's copy constructor throws.
   explicit basic_string(const allocator_type& a = allocator_type())
      : base_t(a, InternalBufferChars)
   { this->priv_terminate_string(); }

   //! <b>Effects</b>: Copy constructs a basic_string.
   //!
   //! <b>Postcondition</b>: x == *this.
   //! 
   //! <b>Throws</b>: If allocator_type's default constructor or copy constructor throws.
   basic_string(const basic_string& s) 
      : base_t(s.alloc()) 
   { this->priv_range_initialize(s.begin(), s.end()); }

   //! <b>Effects</b>: Move constructor. Moves mx's resources to *this.
   //!
   //! <b>Throws</b>: If allocator_type's copy constructor throws.
   //! 
   //! <b>Complexity</b>: Constant.
   #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
   basic_string(const detail::moved_object<basic_string>& s) 
      : base_t(move((base_t&)s.get()))
   {}
   #else
   basic_string(basic_string && s) 
      : base_t(move((base_t&)s))
   {}
   #endif

   //! <b>Effects</b>: Constructs a basic_string taking the allocator as parameter,
   //!   and is initialized by a specific number of characters of the s string. 
   basic_string(const basic_string& s, size_type pos, size_type n = npos,
               const allocator_type& a = allocator_type()) 
      : base_t(a) 
   {
      if (pos > s.size())
         this->throw_out_of_range();
      else
         this->priv_range_initialize
            (s.begin() + pos, s.begin() + pos + min_value(n, s.size() - pos));
   }

   //! <b>Effects</b>: Constructs a basic_string taking the allocator as parameter,
   //!   and is initialized by a specific number of characters of the s c-string.
   basic_string(const CharT* s, size_type n,
               const allocator_type& a = allocator_type()) 
      : base_t(a) 
   { this->priv_range_initialize(s, s + n); }

   //! <b>Effects</b>: Constructs a basic_string taking the allocator as parameter,
   //!   and is initialized by the null-terminated s c-string.
   basic_string(const CharT* s,
                const allocator_type& a = allocator_type())
      : base_t(a) 
   { this->priv_range_initialize(s, s + Traits::length(s)); }

   //! <b>Effects</b>: Constructs a basic_string taking the allocator as parameter,
   //!   and is initialized by n copies of c.
   basic_string(size_type n, CharT c,
                const allocator_type& a = allocator_type())
      : base_t(a)
   {  
      this->priv_range_initialize(cvalue_iterator(c, n),
                                  cvalue_iterator());
   }

   //! <b>Effects</b>: Constructs a basic_string taking the allocator as parameter,
   //!   and a range of iterators.
   template <class InputIterator>
   basic_string(InputIterator f, InputIterator l,
               const allocator_type& a = allocator_type())
      : base_t(a)
   {
      //Dispatch depending on integer/iterator
      const bool aux_boolean = detail::is_convertible<InputIterator, std::size_t>::value;
      typedef detail::bool_<aux_boolean> Result;
      this->priv_initialize_dispatch(f, l, Result());
   }

   //! <b>Effects</b>: Destroys the basic_string. All used memory is deallocated.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   ~basic_string() 
   {}
      
   //! <b>Effects</b>: Copy constructs a string.
   //!
   //! <b>Postcondition</b>: x == *this.
   //! 
   //! <b>Complexity</b>: Linear to the elements x contains.
   basic_string& operator=(const basic_string& s)
   {
      if (&s != this) 
         this->assign(s.begin(), s.end());
      return *this;
   }

   //! <b>Effects</b>: Move constructor. Moves mx's resources to *this.
   //!
   //! <b>Throws</b>: If allocator_type's copy constructor throws.
   //! 
   //! <b>Complexity</b>: Constant.
   #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
   basic_string& operator=(const detail::moved_object<basic_string>& ms)
   {
      basic_string &s = ms.get();
      if (&s != this){
         this->swap(s);
      }
      return *this;
   }
   #else
   basic_string& operator=(basic_string && ms)
   {
      basic_string &s = ms;
      if (&s != this){
         this->swap(s);
      }
      return *this;
   }
   #endif

   //! <b>Effects</b>: Assignment from a null-terminated c-string.
   basic_string& operator=(const CharT* s) 
   { return this->assign(s, s + Traits::length(s)); }

   //! <b>Effects</b>: Assignment from character.
   basic_string& operator=(CharT c)
   { return this->assign(static_cast<size_type>(1), c); }

   //! <b>Effects</b>: Returns an iterator to the first element contained in the vector.
   //! 
   //! <b>Throws</b>: Nothing.
   //! 
   //! <b>Complexity</b>: Constant.
   iterator begin()
   { return this->priv_addr(); }

   //! <b>Effects</b>: Returns a const_iterator to the first element contained in the vector.
   //! 
   //! <b>Throws</b>: Nothing.
   //! 
   //! <b>Complexity</b>: Constant.
   const_iterator begin() const
   { return this->priv_addr(); }

   //! <b>Effects</b>: Returns an iterator to the end of the vector.
   //! 
   //! <b>Throws</b>: Nothing.
   //! 
   //! <b>Complexity</b>: Constant.
   iterator end()
   { return this->priv_addr() + this->priv_size(); }

   //! <b>Effects</b>: Returns a const_iterator to the end of the vector.
   //! 
   //! <b>Throws</b>: Nothing.
   //! 
   //! <b>Complexity</b>: Constant.
   const_iterator end() const 
   { return this->priv_addr() + this->priv_size(); }  

   //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning 
   //! of the reversed vector. 
   //! 
   //! <b>Throws</b>: Nothing.
   //! 
   //! <b>Complexity</b>: Constant.
   reverse_iterator rbegin()             
   { return reverse_iterator(this->priv_addr() + this->priv_size()); }

   //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning 
   //! of the reversed vector. 
   //! 
   //! <b>Throws</b>: Nothing.
   //! 
   //! <b>Complexity</b>: Constant.
   const_reverse_iterator rbegin() const 
   { return const_reverse_iterator(this->priv_addr() + this->priv_size()); }

   //! <b>Effects</b>: Returns a reverse_iterator pointing to the end
   //! of the reversed vector. 
   //! 
   //! <b>Throws</b>: Nothing.
   //! 
   //! <b>Complexity</b>: Constant.
   reverse_iterator rend()               
   { return reverse_iterator(this->priv_addr()); }

   //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
   //! of the reversed vector. 
   //! 
   //! <b>Throws</b>: Nothing.
   //! 
   //! <b>Complexity</b>: Constant.
   const_reverse_iterator rend()   const 
   { return const_reverse_iterator(this->priv_addr()); }

   //! <b>Effects</b>: Returns a copy of the internal allocator.
   //! 
   //! <b>Throws</b>: If allocator's copy constructor throws.
   //! 
   //! <b>Complexity</b>: Constant.
   allocator_type get_allocator() const 
   { return this->alloc(); }

   //! <b>Effects</b>: Returns the number of the elements contained in the vector.
   //! 
   //! <b>Throws</b>: Nothing.
   //! 
   //! <b>Complexity</b>: Constant.
   size_type size() const    
   { return this->priv_size(); }

   //! <b>Effects</b>: Returns the number of the elements contained in the vector.
   //! 
   //! <b>Throws</b>: Nothing.
   //! 
   //! <b>Complexity</b>: Constant.
   size_type length() const
   { return this->size(); }

   //! <b>Effects</b>: Returns the largest possible size of the vector.
   //! 
   //! <b>Throws</b>: Nothing.
   //! 
   //! <b>Complexity</b>: Constant.
   size_type max_size() const
   { return base_t::max_size(); }

   //! <b>Effects</b>: Inserts or erases elements at the end such that
   //!   the size becomes n. New elements are copy constructed from x.
   //!
   //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
   //!
   //! <b>Complexity</b>: Linear to the difference between size() and new_size.
   void resize(size_type n, CharT c)
   {
      if (n <= size())
         this->erase(this->begin() + n, this->end());
      else
         this->append(n - this->size(), c);
   }

   //! <b>Effects</b>: Inserts or erases elements at the end such that
   //!   the size becomes n. New elements are default constructed.
   //!
   //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
   //!
   //! <b>Complexity</b>: Linear to the difference between size() and new_size.
   void resize(size_type n)
   { resize(n, this->priv_null()); }

   //! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
   //!   effect. Otherwise, it is a request for allocation of additional memory.
   //!   If the request is successful, then capacity() is greater than or equal to
   //!   n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
   //! 
   //! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws.
   void reserve(size_type res_arg)
   {
      if (res_arg > this->max_size())
         this->throw_length_error();

      if (this->capacity() < res_arg){
         size_type n = max_value(res_arg, this->size()) + 1;
         size_type new_cap = this->next_capacity(n);
         pointer new_start = this->allocation_command
            (allocate_new, n, new_cap, new_cap).first;
         size_type new_length = 0;

         new_length += priv_uninitialized_copy
            (this->priv_addr(), this->priv_addr() + this->priv_size(), new_start);
         this->priv_construct_null(new_start + new_length);
         this->deallocate_block();
         this->is_short(false);
         this->priv_addr(new_start);
         this->priv_size(new_length);
         this->priv_storage(new_cap);
      }
   }

   //! <b>Effects</b>: Number of elements for which memory has been allocated.
   //!   capacity() is always greater than or equal to size().
   //! 
   //! <b>Throws</b>: Nothing.
   //! 
   //! <b>Complexity</b>: Constant.
   size_type capacity() const
   { return this->priv_capacity(); }

   //! <b>Effects</b>: Erases all the elements of the vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Linear to the number of elements in the vector.
   void clear()
   {
      if (!empty()) {
         Traits::assign(*this->priv_addr(), this->priv_null());
         this->priv_size(0);
      }
   } 

   //! <b>Effects</b>: Returns true if the vector contains no elements.
   //! 
   //! <b>Throws</b>: Nothing.
   //! 
   //! <b>Complexity</b>: Constant.
   bool empty() const
   { return !this->priv_size(); }

   //! <b>Requires</b>: size() < n.
   //!
   //! <b>Effects</b>: Returns a reference to the nth element 
   //!   from the beginning of the container.
   //! 
   //! <b>Throws</b>: Nothing.
   //! 
   //! <b>Complexity</b>: Constant.
   reference operator[](size_type n)
      { return *(this->priv_addr() + n); }

   //! <b>Requires</b>: size() < n.
   //!
   //! <b>Effects</b>: Returns a const reference to the nth element 
   //!   from the beginning of the container.
   //! 
   //! <b>Throws</b>: Nothing.
   //! 
   //! <b>Complexity</b>: Constant.
   const_reference operator[](size_type n) const
      { return *(this->priv_addr() + n); }

   //! <b>Requires</b>: size() < n.
   //!
   //! <b>Effects</b>: Returns a reference to the nth element 
   //!   from the beginning of the container.
   //! 
   //! <b>Throws</b>: std::range_error if n >= size()
   //! 
   //! <b>Complexity</b>: Constant.
   reference at(size_type n) {
      if (n >= size())
      this->throw_out_of_range();
      return *(this->priv_addr() + n);
   }

   //! <b>Requires</b>: size() < n.
   //!
   //! <b>Effects</b>: Returns a const reference to the nth element 
   //!   from the beginning of the container.
   //! 
   //! <b>Throws</b>: std::range_error if n >= size()
   //! 
   //! <b>Complexity</b>: Constant.
   const_reference at(size_type n) const {
      if (n >= size())
         this->throw_out_of_range();
      return *(this->priv_addr() + n);
   }

   //! <b>Effects</b>: Appends string s to *this.
   basic_string& operator+=(const basic_string& s)
   {  return this->append(s); }

   //! <b>Effects</b>: Appends c-string s to *this.
   basic_string& operator+=(const CharT* s)
   {  return this->append(s); }

   //! <b>Effects</b>: Appends character c to *this.
   basic_string& operator+=(CharT c)
   {  this->push_back(c); return *this;   }

   //! <b>Effects</b>: Appends string s to *this.
   basic_string& append(const basic_string& s) 
   {  return this->append(s.begin(), s.end());  }

   //! <b>Effects</b>: Appends the range [pos, pos + n) from string s to *this.
   basic_string& append(const basic_string& s, size_type pos, size_type n)
   {
      if (pos > s.size())
      this->throw_out_of_range();
      return this->append(s.begin() + pos,
                          s.begin() + pos + min_value(n, s.size() - pos));
   }

   //! <b>Effects</b>: Appends the range [s, s + n) from c-string s to *this.
   basic_string& append(const CharT* s, size_type n) 
   {  return this->append(s, s + n);  }

   //! <b>Effects</b>: Appends the c-string s to *this.
   basic_string& append(const CharT* s) 
   {  return this->append(s, s + Traits::length(s));  }

   //! <b>Effects</b>: Appends the n times the character c to *this.
   basic_string& append(size_type n, CharT c)
   {  return this->append(cvalue_iterator(c, n), cvalue_iterator()); }

   //! <b>Effects</b>: Appends the range [first, last) *this.
   template <class InputIter>
   basic_string& append(InputIter first, InputIter last)
   {  this->insert(this->end(), first, last);   return *this;  }

   //! <b>Effects</b>: Inserts a copy of c at the end of the vector.
   void push_back(CharT c)
   {
      if (this->priv_size() < this->capacity()){
         this->priv_construct_null(this->priv_addr() + (this->priv_size() + 1));
         Traits::assign(this->priv_addr()[this->priv_size()], c);
         this->priv_size(this->priv_size()+1);
      }
      else{
         //No enough memory, insert a new object at the end
         this->append((size_type)1, c);
      }
   }

   //! <b>Effects</b>: Removes the last element from the vector.
   void pop_back()
   {
      Traits::assign(this->priv_addr()[this->priv_size()-1], this->priv_null());
      this->priv_size(this->priv_size()-1);;
   }

   //! <b>Effects</b>: Assigns the value s to *this.
   basic_string& assign(const basic_string& s) 
   {  return this->operator=(s); }

   //! <b>Effects</b>: Moves the resources from ms *this.
   #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
   basic_string& assign(const detail::moved_object<basic_string>& ms) 
   {  return this->operator=(ms);}
   #else
   basic_string& assign(basic_string && ms) 
   {  return this->operator=(ms);}
   #endif

   //! <b>Effects</b>: Assigns the range [pos, pos + n) from s to *this.
   basic_string& assign(const basic_string& s, 
                        size_type pos, size_type n) {
      if (pos > s.size())
      this->throw_out_of_range();
      return this->assign(s.begin() + pos, 
                          s.begin() + pos + min_value(n, s.size() - pos));
   }

   //! <b>Effects</b>: Assigns the range [s, s + n) from s to *this.
   basic_string& assign(const CharT* s, size_type n)
   {  return this->assign(s, s + n);   }

   //! <b>Effects</b>: Assigns the c-string s to *this.
   basic_string& assign(const CharT* s)
   { return this->assign(s, s + Traits::length(s)); }

   //! <b>Effects</b>: Assigns the character c n-times to *this.
   basic_string& assign(size_type n, CharT c)
   {  return this->assign(cvalue_iterator(c, n), cvalue_iterator()); }

   //! <b>Effects</b>: Assigns the range [first, last) to *this.
   template <class InputIter>
   basic_string& assign(InputIter first, InputIter last) 
   {
      //Dispatch depending on integer/iterator
      const bool aux_boolean = detail::is_convertible<InputIter, std::size_t>::value;
      typedef detail::bool_<aux_boolean> Result;
      return this->priv_assign_dispatch(first, last, Result());
   }

   //! <b>Effects</b>: Assigns the range [f, l) to *this.
   basic_string& assign(const CharT* f, const CharT* l)
   {
      const std::ptrdiff_t n = l - f;
      if (static_cast<size_type>(n) <= size()) {
         Traits::copy(detail::get_pointer(this->priv_addr()), f, n);
         this->erase(this->priv_addr() + n, this->priv_addr() + this->priv_size());
      }
      else {
         Traits::copy(detail::get_pointer(this->priv_addr()), f, this->priv_size());
         this->append(f + this->priv_size(), l);
      }
      return *this;
   }

   //! <b>Effects</b>: Inserts the string s before pos.
   basic_string& insert(size_type pos, const basic_string& s) 
   {
      if (pos > size())
         this->throw_out_of_range();
      if (this->size() > this->max_size() - s.size())
         this->throw_length_error();
      this->insert(this->priv_addr() + pos, s.begin(), s.end());
      return *this;
   }

   //! <b>Effects</b>: Inserts the range [pos, pos + n) from string s before pos.
   basic_string& insert(size_type pos, const basic_string& s,
                        size_type beg, size_type n) 
   {
      if (pos > this->size() || beg > s.size())
         this->throw_out_of_range();
      size_type len = min_value(n, s.size() - beg);
      if (this->size() > this->max_size() - len)
         this->throw_length_error();
      const CharT *beg_ptr = detail::get_pointer(s.begin()) + beg;
      const CharT *end_ptr = beg_ptr + len;
      this->insert(this->priv_addr() + pos, beg_ptr, end_ptr);
      return *this;
   }

   //! <b>Effects</b>: Inserts the range [s, s + n) before pos.
   basic_string& insert(size_type pos, const CharT* s, size_type n) 
   {
      if (pos > this->size())
         this->throw_out_of_range();
      if (this->size() > this->max_size() - n)
         this->throw_length_error();
      this->insert(this->priv_addr() + pos, s, s + n);
      return *this;
   }

   //! <b>Effects</b>: Inserts the c-string s before pos.
   basic_string& insert(size_type pos, const CharT* s) 
   {
      if (pos > size())
         this->throw_out_of_range();
      size_type len = Traits::length(s);
      if (this->size() > this->max_size() - len)
         this->throw_length_error();
      this->insert(this->priv_addr() + pos, s, s + len);
      return *this;
   }

   //! <b>Effects</b>: Inserts the character c n-times before pos.
   basic_string& insert(size_type pos, size_type n, CharT c) 
   {
      if (pos > this->size())
         this->throw_out_of_range();
      if (this->size() > this->max_size() - n)
         this->throw_length_error();
      this->insert(this->priv_addr() + pos, n, c);
      return *this;
   }

   //! <b>Effects</b>: Inserts the character c before position.
   iterator insert(iterator position, CharT c) 
   {
      size_type new_offset = position - this->priv_addr() + 1;
      this->insert(position, cvalue_iterator(c, 1),
                             cvalue_iterator());
      return this->priv_addr() + new_offset;
   }

   //! <b>Effects</b>: Inserts the character c n-times before position.
   void insert(iterator position, std::size_t n, CharT c)
   {
      this->insert(position, cvalue_iterator(c, n),
                             cvalue_iterator());
   }

   //! <b>Effects</b>: Inserts the range [first, last) before position.
   template <class InputIter>
   void insert(iterator p, InputIter first, InputIter last) 
   {
      //Dispatch depending on integer/iterator
      const bool aux_boolean = detail::is_convertible<InputIter, std::size_t>::value;
      typedef detail::bool_<aux_boolean> Result;
      this->priv_insert_dispatch(p, first, last, Result());
   }

   //! <b>Effects</b>: Inserts the range [pos, pos + n).
   basic_string& erase(size_type pos = 0, size_type n = npos) 
   {
      if (pos > size())
         this->throw_out_of_range();
      erase(this->priv_addr() + pos, this->priv_addr() + pos + min_value(n, size() - pos));
      return *this;
   }  

   //! <b>Effects</b>: Erases the character pointed by position.
   iterator erase(iterator position) 
   {
      // The move includes the terminating null.
      Traits::move(detail::get_pointer(position), 
                   detail::get_pointer(position + 1), 
                   this->priv_size() - (position - this->priv_addr()));
      this->priv_size(this->priv_size()-1);
      return position;
   }

   //! <b>Effects</b>: Erases the range [first, last).
   iterator erase(iterator first, iterator last)
   {
      if (first != last) { // The move includes the terminating null.
         size_type num_erased = last - first;
         Traits::move(detail::get_pointer(first), 
                      detail::get_pointer(last), 
                      (this->priv_size() + 1)-(last - this->priv_addr()));
         size_type new_length = this->priv_size() - num_erased;
         this->priv_size(new_length);
      }
      return first;
   }

   //! <b>Effects</b>: Replaces a substring of *this with the string s.
   basic_string& replace(size_type pos, size_type n, 
                         const basic_string& s) 
   {
      if (pos > size())
         this->throw_out_of_range();
      const size_type len = min_value(n, size() - pos);
      if (this->size() - len >= this->max_size() - s.size())
         this->throw_length_error();
      return this->replace(this->priv_addr() + pos, this->priv_addr() + pos + len, 
                           s.begin(), s.end());
   }

   //! <b>Effects</b>: Replaces a substring of *this with a substring of s.
   basic_string& replace(size_type pos1, size_type n1,
                         const basic_string& s,
                         size_type pos2, size_type n2) 
   {
      if (pos1 > size() || pos2 > s.size())
         this->throw_out_of_range();
      const size_type len1 = min_value(n1, size() - pos1);
      const size_type len2 = min_value(n2, s.size() - pos2);
      if (this->size() - len1 >= this->max_size() - len2)
         this->throw_length_error();
      return this->replace(this->priv_addr() + pos1, this->priv_addr() + pos1 + len1,
                     s.priv_addr() + pos2, s.priv_addr() + pos2 + len2);
   }

   //! <b>Effects</b>: Replaces a substring of *this with the first n1 characters of s.
   basic_string& replace(size_type pos, size_type n1,
                        const CharT* s, size_type n2) 
   {
      if (pos > size())
         this->throw_out_of_range();
      const size_type len = min_value(n1, size() - pos);
      if (n2 > this->max_size() || size() - len >= this->max_size() - n2)
         this->throw_length_error();
      return this->replace(this->priv_addr() + pos, this->priv_addr() + pos + len,
                     s, s + n2);
   }

   //! <b>Effects</b>: Replaces a substring of *this with a null-terminated character array.
   basic_string& replace(size_type pos, size_type n1,
                        const CharT* s) 
   {
      if (pos > size())
         this->throw_out_of_range();
      const size_type len = min_value(n1, size() - pos);
      const size_type n2 = Traits::length(s);
      if (n2 > this->max_size() || size() - len >= this->max_size() - n2)
         this->throw_length_error();
      return this->replace(this->priv_addr() + pos, this->priv_addr() + pos + len,
                     s, s + Traits::length(s));
   }

   //! <b>Effects</b>: Replaces a substring of *this with n1 copies of c.
   basic_string& replace(size_type pos, size_type n1,
                        size_type n2, CharT c) 
   {
      if (pos > size())
         this->throw_out_of_range();
      const size_type len = min_value(n1, size() - pos);
      if (n2 > this->max_size() || size() - len >= this->max_size() - n2)
         this->throw_length_error();
      return this->replace(this->priv_addr() + pos, this->priv_addr() + pos + len, n2, c);
   }

   //! <b>Effects</b>: Replaces a substring of *this with the string s. 
   basic_string& replace(iterator first, iterator last, 
                        const basic_string& s) 
   { return this->replace(first, last, s.begin(), s.end()); }

   //! <b>Effects</b>: Replaces a substring of *this with the first n characters of s.
   basic_string& replace(iterator first, iterator last,
                        const CharT* s, size_type n) 
   { return this->replace(first, last, s, s + n); }

   //! <b>Effects</b>: Replaces a substring of *this with a null-terminated character array.
   basic_string& replace(iterator first, iterator last,
                        const CharT* s) 
   {  return this->replace(first, last, s, s + Traits::length(s));   }

   //! <b>Effects</b>: Replaces a substring of *this with n copies of c. 
   basic_string& replace(iterator first, iterator last, 
                         size_type n, CharT c)
   {
      const size_type len = static_cast<size_type>(last - first);
      if (len >= n) {
         Traits::assign(detail::get_pointer(first), n, c);
         erase(first + n, last);
      }
      else {
         Traits::assign(detail::get_pointer(first), len, c);
         insert(last, n - len, c);
      }
      return *this;
   }

   //! <b>Effects</b>: Replaces a substring of *this with the range [f, l)
   template <class InputIter>
   basic_string& replace(iterator first, iterator last,
                        InputIter f, InputIter l) 
   {
      //Dispatch depending on integer/iterator
      const bool aux_boolean = detail::is_convertible<InputIter, std::size_t>::value;
      typedef detail::bool_<aux_boolean> Result;
      return this->priv_replace_dispatch(first, last, f, l,  Result());
   }

   //! <b>Effects</b>: Copies a substring of *this to a buffer.
   size_type copy(CharT* s, size_type n, size_type pos = 0) const 
   {
      if (pos > size())
         this->throw_out_of_range();
      const size_type len = min_value(n, size() - pos);
      Traits::copy(s, detail::get_pointer(this->priv_addr() + pos), len);
      return len;
   }

   //! <b>Effects</b>: Swaps the contents of two strings. 
   void swap(basic_string& s) 
   {  base_t::swap(s);  }

   //! <b>Effects</b>: Swaps the contents of two strings. 
   #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
   void swap(const detail::moved_object<basic_string>& ms) 
   {  this->swap(ms.get());  }
   #else
   void swap(basic_string && ms) 
   {  this->swap(ms);  }
   #endif

   //! <b>Returns</b>: Returns a pointer to a null-terminated array of characters 
   //!   representing the string's contents. For any string s it is guaranteed 
   //!   that the first s.size() characters in the array pointed to by s.c_str() 
   //!   are equal to the character in s, and that s.c_str()[s.size()] is a null 
   //!   character. Note, however, that it not necessarily the first null character. 
   //!   Characters within a string are permitted to be null. 
   const CharT* c_str() const 
   {  return detail::get_pointer(this->priv_addr()); }

   //! <b>Returns</b>: Returns a pointer to an array of characters, not necessarily
   //!   null-terminated, representing the string's contents. data() is permitted,
   //!   but not required, to be identical to c_str(). The first size() characters
   //!   of that array are guaranteed to be identical to the characters in *this.
   //!   The return value of data() is never a null pointer, even if size() is zero.
   const CharT* data()  const 
   {  return detail::get_pointer(this->priv_addr()); }

   //! <b>Effects</b>: Searches for s as a substring of *this, beginning at 
   //!   character pos of *this.
   size_type find(const basic_string& s, size_type pos = 0) const 
   { return find(s.c_str(), pos, s.size()); }

   //! <b>Effects</b>: Searches for a null-terminated character array as a
   //!   substring of *this, beginning at character pos of *this.
   size_type find(const CharT* s, size_type pos = 0) const 
   { return find(s, pos, Traits::length(s)); }

   //! <b>Effects</b>: Searches for the first n characters of s as a substring
   //!   of *this, beginning at character pos of *this.
   size_type find(const CharT* s, size_type pos, size_type n) const
   {
      if (pos + n > size())
         return npos;
      else {
         pointer finish = this->priv_addr() + this->priv_size();
         const const_iterator result =
            std::search(detail::get_pointer(this->priv_addr() + pos), 
                   detail::get_pointer(finish),
                   s, s + n, Eq_traits<Traits>());
         return result != finish ? result - begin() : npos;
      }
   }

   //! <b>Effects</b>: Searches for the character c, beginning at character
   //!   position pos. 
   size_type find(CharT c, size_type pos = 0) const
   {
      if (pos >= size())
         return npos;
      else {
         pointer finish = this->priv_addr() + this->priv_size();
         const const_iterator result =
            std::find_if(this->priv_addr() + pos, finish,
                  std::bind2nd(Eq_traits<Traits>(), c));
         return result != finish ? result - begin() : npos;
      }
   }

   //! <b>Effects</b>: Searches backward for s as a substring of *this,
   //!   beginning at character position min(pos, size())
   size_type rfind(const basic_string& s, size_type pos = npos) const 
      { return rfind(s.c_str(), pos, s.size()); }

   //! <b>Effects</b>: Searches backward for a null-terminated character array
   //!   as a substring of *this, beginning at character min(pos, size())
   size_type rfind(const CharT* s, size_type pos = npos) const 
      { return rfind(s, pos, Traits::length(s)); }

   //! <b>Effects</b>: Searches backward for the first n characters of s as a
   //!   substring of *this, beginning at character position min(pos, size()).
   size_type rfind(const CharT* s, size_type pos, size_type n) const
   {
      const std::size_t len = size();

      if (n > len)
         return npos;
      else if (n == 0)
         return min_value(len, pos);
      else {
         const const_iterator last = begin() + min_value(len - n, pos) + n;
         const const_iterator result = find_end(begin(), last,
                                                s, s + n,
                                                Eq_traits<Traits>());
         return result != last ? result - begin() : npos;
      }
   }

   //! <b>Effects</b>: Searches backward for a null-terminated character array
   //!   as a substring of *this, beginning at character min(pos, size()).
   size_type rfind(CharT c, size_type pos = npos) const
   {
      const size_type len = size();

      if (len < 1)
         return npos;
      else {
         const const_iterator last = begin() + min_value(len - 1, pos) + 1;
         const_reverse_iterator rresult =
            std::find_if(const_reverse_iterator(last), rend(),
                  std::bind2nd(Eq_traits<Traits>(), c));
         return rresult != rend() ? (rresult.base() - 1) - begin() : npos;
      }
   }

   //! <b>Effects</b>: Searches within *this, beginning at pos, for the first
   //!   character that is equal to any character within s. 
   size_type find_first_of(const basic_string& s, size_type pos = 0) const 
      { return find_first_of(s.c_str(), pos, s.size()); }

   //! <b>Effects</b>: Searches within *this, beginning at pos, for the first
   //!   character that is equal to any character within s. 
   size_type find_first_of(const CharT* s, size_type pos = 0) const 
      { return find_first_of(s, pos, Traits::length(s)); }

   //! <b>Effects</b>: Searches within *this, beginning at pos, for the first
   //!   character that is equal to any character within the first n characters of s. 
   size_type find_first_of(const CharT* s, size_type pos, 
                           size_type n) const
   {
      if (pos >= size())
         return npos;
      else {
         pointer finish = this->priv_addr() + this->priv_size();
         const_iterator result = std::find_first_of(this->priv_addr() + pos, finish,
                                                    s, s + n,
                                                    Eq_traits<Traits>());
         return result != finish ? result - begin() : npos;
      }
   }

   //! <b>Effects</b>: Searches within *this, beginning at pos, for the first
   //!   character that is equal to c. 
  size_type find_first_of(CharT c, size_type pos = 0) const 
    { return find(c, pos); }

   //! <b>Effects</b>: Searches backward within *this, beginning at min(pos, size()),
   //!   for the first character that is equal to any character within s.
   size_type find_last_of(const basic_string& s,
                           size_type pos = npos) const
      { return find_last_of(s.c_str(), pos, s.size()); }

   //! <b>Effects</b>: Searches backward *this, beginning at min(pos, size()), for
   //!   the first character that is equal to any character within s. 
   size_type find_last_of(const CharT* s, size_type pos = npos) const 
      { return find_last_of(s, pos, Traits::length(s)); }

   //! <b>Effects</b>: Searches backward within *this, beginning at min(pos, size()),
   //!   for the first character that is equal to any character within the first n
   //!   characters of s. 
   size_type find_last_of(const CharT* s, size_type pos, size_type n) const
   {
      const size_type len = size();

      if (len < 1)
         return npos;
      else {
         const const_iterator last = this->priv_addr() + min_value(len - 1, pos) + 1;
         const const_reverse_iterator rresult =
            std::find_first_of(const_reverse_iterator(last), rend(),
                               s, s + n,
                               Eq_traits<Traits>());
         return rresult != rend() ? (rresult.base() - 1) - this->priv_addr() : npos;
      }
   }

   //! <b>Effects</b>: Searches backward *this, beginning at min(pos, size()), for
   //!   the first character that is equal to c. 
   size_type find_last_of(CharT c, size_type pos = npos) const 
      {  return rfind(c, pos);   }

   //! <b>Effects</b>: Searches within *this, beginning at pos, for the first
   //!   character that is not equal to any character within s. 
   size_type find_first_not_of(const basic_string& s, 
                              size_type pos = 0) const 
      { return find_first_not_of(s.c_str(), pos, s.size()); }

   //! <b>Effects</b>: Searches within *this, beginning at pos, for the first
   //!   character that is not equal to any character within s. 
   size_type find_first_not_of(const CharT* s, size_type pos = 0) const 
      { return find_first_not_of(s, pos, Traits::length(s)); }

   //! <b>Effects</b>: Searches within *this, beginning at pos, for the first
   //!   character that is not equal to any character within the first n
   //!   characters of s. 
   size_type find_first_not_of(const CharT* s, size_type pos,
                              size_type n) const
   {
      if (pos > size())
         return npos;
      else {
         pointer finish = this->priv_addr() + this->priv_size();
         const_iterator result = std::find_if(this->priv_addr() + pos, finish,
                                    Not_within_traits<Traits>(s, s + n));
         return result != finish ? result - this->priv_addr() : npos;
      }
   }

   //! <b>Effects</b>: Searches within *this, beginning at pos, for the first
   //!   character that is not equal to c.
   size_type find_first_not_of(CharT c, size_type pos = 0) const
   {
      if (pos > size())
         return npos;
      else {
         pointer finish = this->priv_addr() + this->priv_size();
         const_iterator result
            = std::find_if(this->priv_addr() + pos, finish,
                     std::not1(std::bind2nd(Eq_traits<Traits>(), c)));
         return result != finish ? result - begin() : npos;
      }
   }

   //! <b>Effects</b>: Searches backward within *this, beginning at min(pos, size()),
   //!   for the first character that is not equal to any character within s. 
   size_type find_last_not_of(const basic_string& s, 
                              size_type pos = npos) const
      { return find_last_not_of(s.c_str(), pos, s.size()); }

   //! <b>Effects</b>: Searches backward *this, beginning at min(pos, size()),
   //!   for the first character that is not equal to any character within s. 
   size_type find_last_not_of(const CharT* s, size_type pos = npos) const
      { return find_last_not_of(s, pos, Traits::length(s)); }

   //! <b>Effects</b>: Searches backward within *this, beginning at min(pos, size()),
   //!   for the first character that is not equal to any character within the first
   //!   n characters of s. 
   size_type find_last_not_of(const CharT* s, size_type pos, size_type n) const
   {
      const size_type len = size();

      if (len < 1)
         return npos;
      else {
         const const_iterator last = begin() + min_value(len - 1, pos) + 1;
         const const_reverse_iterator rresult =
            std::find_if(const_reverse_iterator(last), rend(),
                    Not_within_traits<Traits>(s, s + n));
         return rresult != rend() ? (rresult.base() - 1) - begin() : npos;
      }
   }

   //! <b>Effects</b>: Searches backward *this, beginning at min(pos, size()),
   //!   for the first character that is not equal to c. 
   size_type find_last_not_of(CharT c, size_type pos = npos) const
   {
      const size_type len = size();

      if (len < 1)
         return npos;
      else {
         const const_iterator last = begin() + min_value(len - 1, pos) + 1;
         const_reverse_iterator rresult =
            std::find_if(const_reverse_iterator(last), rend(),
                  std::not1(std::bind2nd(Eq_traits<Traits>(), c)));
         return rresult != rend() ? (rresult.base() - 1) - begin() : npos;
      }
   }

   //! <b>Effects</b>: Returns a substring of *this.
   basic_string substr(size_type pos = 0, size_type n = npos) const 
   {
      if (pos > size())
         this->throw_out_of_range();
      return basic_string(this->priv_addr() + pos, 
                          this->priv_addr() + pos + min_value(n, size() - pos), this->alloc());
   }

   //! <b>Effects</b>: Three-way lexicographical comparison of s and *this.
   int compare(const basic_string& s) const 
   { return s_compare(this->priv_addr(), this->priv_addr() + this->priv_size(), s.priv_addr(), s.priv_addr() + s.priv_size()); }

   //! <b>Effects</b>: Three-way lexicographical comparison of s and a substring
   //!   of *this. 
   int compare(size_type pos1, size_type n1, const basic_string& s) const 
   {
      if (pos1 > size())
         this->throw_out_of_range();
      return s_compare(this->priv_addr() + pos1, 
                        this->priv_addr() + pos1 + min_value(n1, size() - pos1),
                        s.priv_addr(), s.priv_addr() + s.priv_size());
   }

   //! <b>Effects</b>: Three-way lexicographical comparison of a substring of s
   //!   and a substring of *this. 
   int compare(size_type pos1, size_type n1,
               const basic_string& s,
               size_type pos2, size_type n2) const {
      if (pos1 > size() || pos2 > s.size())
      this->throw_out_of_range();
      return s_compare(this->priv_addr() + pos1, 
                        this->priv_addr() + pos1 + min_value(n1, size() - pos1),
                        s.priv_addr() + pos2, 
                        s.priv_addr() + pos2 + min_value(n2, size() - pos2));
   }

   //! <b>Effects</b>: Three-way lexicographical comparison of s and *this.
   int compare(const CharT* s) const 
   {  return s_compare(this->priv_addr(), this->priv_addr() + this->priv_size(), s, s + Traits::length(s));   }


   //! <b>Effects</b>: Three-way lexicographical comparison of the first
   //!   min(len, traits::length(s) characters of s and a substring of *this.
   int compare(size_type pos1, size_type n1, const CharT* s,
               size_type n2 = npos) const 
   {
      if (pos1 > size())
         this->throw_out_of_range();
      return s_compare(this->priv_addr() + pos1, 
                        this->priv_addr() + pos1 + min_value(n1, size() - pos1),
                        s, s + n2);
   }

   /// @cond
   private:
   static int s_compare(const_pointer f1, const_pointer l1,
                        const_pointer f2, const_pointer l2) 
   {
      const std::ptrdiff_t n1 = l1 - f1;
      const std::ptrdiff_t n2 = l2 - f2;
      const int cmp = Traits::compare(detail::get_pointer(f1), 
                                      detail::get_pointer(f2), 
                                      min_value(n1, n2));
      return cmp != 0 ? cmp : (n1 < n2 ? -1 : (n1 > n2 ? 1 : 0));
   }

   void priv_construct_null(pointer p)
   {  this->construct(p, 0);  }

   static CharT priv_null()
   {  return (CharT) 0; }

   // Helper functions used by constructors.  It is a severe error for
   // any of them to be called anywhere except from within constructors.
   void priv_terminate_string() 
   {  this->priv_construct_null(this->priv_addr() + this->priv_size());  }

   template <class InputIter>
   void priv_range_initialize(InputIter f, InputIter l,
                              std::input_iterator_tag)
   {
      this->allocate_initial_block(InternalBufferChars);
      this->priv_construct_null(this->priv_addr() + this->priv_size());
      this->append(f, l);
   }

   template <class ForwardIter>
   void priv_range_initialize(ForwardIter f, ForwardIter l, 
                              std::forward_iterator_tag)
   {
      difference_type n = std::distance(f, l);
      this->allocate_initial_block(max_value<difference_type>(n+1, InternalBufferChars));
      priv_uninitialized_copy(f, l, this->priv_addr());
      this->priv_size(n);
      this->priv_terminate_string();
   }

   template <class InputIter>
   void priv_range_initialize(InputIter f, InputIter l)
   {
      typedef typename std::iterator_traits<InputIter>::iterator_category Category;
      this->priv_range_initialize(f, l, Category());
   }

   template <class Integer>
   void priv_initialize_dispatch(Integer n, Integer x, detail::true_)
   {
      this->allocate_initial_block(max_value<difference_type>(n+1, InternalBufferChars));
      priv_uninitialized_fill_n(this->priv_addr(), n, x);
      this->priv_size(n);
      this->priv_terminate_string();
   }

   template <class InputIter>
   void priv_initialize_dispatch(InputIter f, InputIter l, detail::false_)
   {  this->priv_range_initialize(f, l);  }
 
   template<class FwdIt, class Count> inline
   void priv_uninitialized_fill_n(FwdIt first, Count count, const CharT val)
   {
      //Save initial position
      FwdIt init = first;

      BOOST_TRY{
         //Construct objects
         for (; count--; ++first){
            this->construct(first, val);
         }
      }
      BOOST_CATCH(...){
         //Call destructors
         for (; init != first; ++init){
            this->destroy(init);
         }
         BOOST_RETHROW
      }
      BOOST_CATCH_END
   }

   template<class InpIt, class FwdIt> inline
   size_type priv_uninitialized_copy(InpIt first, InpIt last, FwdIt dest)
   {
      //Save initial destination position
      FwdIt dest_init = dest;
      size_type constructed = 0;

      BOOST_TRY{
         //Try to build objects
         for (; first != last; ++dest, ++first, ++constructed){
            this->construct(dest, *first);
         }
      }
      BOOST_CATCH(...){
         //Call destructors
         for (; constructed--; ++dest_init){
            this->destroy(dest_init);
         }
         BOOST_RETHROW
      }
      BOOST_CATCH_END
      return (constructed);
   }

   template <class Integer>
   basic_string& priv_assign_dispatch(Integer n, Integer x, detail::true_) 
   {  return this->assign((size_type) n, (CharT) x);   }

   template <class InputIter>
   basic_string& priv_assign_dispatch(InputIter f, InputIter l,
                                      detail::false_)
   {
      size_type cur = 0;
      CharT *ptr = detail::get_pointer(this->priv_addr());
      while (f != l && cur != this->priv_size()) {
         Traits::assign(*ptr, *f);
         ++f;
         ++cur;
         ++ptr;
      }
      if (f == l)
         this->erase(this->priv_addr() + cur, this->priv_addr() + this->priv_size());
      else
         this->append(f, l);
      return *this;
   }

   template <class InputIter>
   void priv_insert(iterator p, InputIter first, InputIter last, std::input_iterator_tag)
   {
      for ( ; first != last; ++first, ++p) {
         p = this->insert(p, *first);
      }
   }

   template <class ForwardIter>
   void priv_insert(iterator position, ForwardIter first, 
                    ForwardIter last,  std::forward_iterator_tag)
   {
      if (first != last) {
         size_type n = std::distance(first, last);
         size_type remaining = this->capacity() - this->priv_size();
         const size_type old_size = this->size();
         pointer old_start = this->priv_addr();
         bool enough_capacity = false;
         std::pair<pointer, bool> allocation_ret;
         size_type new_cap = 0;

         //Check if we have enough capacity
         if (remaining >= n){
            enough_capacity = true;            
         }
         else {
            //Otherwise expand current buffer or allocate new storage
            new_cap  = this->next_capacity(n);
            allocation_ret = this->allocation_command
                  (allocate_new | expand_fwd | expand_bwd, old_size + n + 1, 
                     new_cap, new_cap, old_start);

            //Check forward expansion
            if(old_start == allocation_ret.first){
               enough_capacity = true;
               this->priv_storage(new_cap);
            }
         }

         //Reuse same buffer
         if(enough_capacity){
            const size_type elems_after =
               this->priv_size() - (position - this->priv_addr());
            size_type old_length = this->priv_size();
            if (elems_after >= n) {
               pointer pointer_past_last = this->priv_addr() + this->priv_size() + 1;
               priv_uninitialized_copy(this->priv_addr() + (this->priv_size() - n + 1),
                                       pointer_past_last, pointer_past_last);

               this->priv_size(this->priv_size()+n);
               Traits::move(detail::get_pointer(position + n),
                           detail::get_pointer(position),
                           (elems_after - n) + 1);
               this->priv_copy(first, last, position);
            }
            else {
               ForwardIter mid = first;
               std::advance(mid, elems_after + 1);

               priv_uninitialized_copy(mid, last, this->priv_addr() + this->priv_size() + 1);
               this->priv_size(this->priv_size() + (n - elems_after));
               priv_uninitialized_copy
                  (position, this->priv_addr() + old_length + 1, 
                  this->priv_addr() + this->priv_size());
               this->priv_size(this->priv_size() + elems_after);
               this->priv_copy(first, mid, position);
            }
         }
         else{
            pointer new_start = allocation_ret.first;
            if(!allocation_ret.second){
               //Copy data to new buffer
               size_type new_length = 0;
               //This can't throw, since characters are POD
               new_length += priv_uninitialized_copy
                              (this->priv_addr(), position, new_start);
               new_length += priv_uninitialized_copy
                              (first, last, new_start + new_length);
               new_length += priv_uninitialized_copy
                              (position, this->priv_addr() + this->priv_size(), 
                              new_start + new_length);
               this->priv_construct_null(new_start + new_length);

               this->deallocate_block();
               this->is_short(false);
               this->priv_addr(new_start);
               this->priv_size(new_length);
               this->priv_storage(new_cap);
            }
            else{
               //value_type is POD, so backwards expansion is much easier 
               //than with vector<T>
               value_type *oldbuf = detail::get_pointer(old_start);
               value_type *newbuf = detail::get_pointer(new_start);
               value_type *pos    = detail::get_pointer(position);
               size_type  before  = pos - oldbuf;

               //First move old data
               Traits::move(newbuf, oldbuf, before);
               Traits::move(newbuf + before + n, pos, old_size - before);
               //Now initialize the new data
               priv_uninitialized_copy(first, last, new_start + before);
               this->priv_construct_null(new_start + (old_size + n));
               this->is_short(false);
               this->priv_addr(new_start);
               this->priv_size(old_size + n);
               this->priv_storage(new_cap);
            }
         }
      }
   }

   template <class Integer>
   void priv_insert_dispatch(iterator p, Integer n, Integer x,
                           detail::true_) 
   {  insert(p, (size_type) n, (CharT) x);   }

   template <class InputIter>
   void priv_insert_dispatch(iterator p, InputIter first, InputIter last,
                           detail::false_) 
   {
      typedef typename std::iterator_traits<InputIter>::iterator_category Category;
      priv_insert(p, first, last, Category());
   }

   template <class InputIterator>
   void priv_copy(InputIterator first, InputIterator last, iterator result)
   {
      for ( ; first != last; ++first, ++result)
         Traits::assign(*result, *first);
   }

   void priv_copy(const CharT* first, const CharT* last, CharT* result) 
   {  Traits::copy(result, first, last - first);  }

   template <class Integer>
   basic_string& priv_replace_dispatch(iterator first, iterator last,
                                       Integer n, Integer x,
                                       detail::true_) 
   {  return this->replace(first, last, (size_type) n, (CharT) x);   }

   template <class InputIter>
   basic_string& priv_replace_dispatch(iterator first, iterator last,
                                       InputIter f, InputIter l,
                                       detail::false_) 
   {
      typedef typename std::iterator_traits<InputIter>::iterator_category Category;
      return this->priv_replace(first, last, f, l, Category());
   }


   template <class InputIter>
   basic_string& priv_replace(iterator first, iterator last,
                              InputIter f, InputIter l, std::input_iterator_tag)
   {
      for ( ; first != last && f != l; ++first, ++f)
         Traits::assign(*first, *f);

      if (f == l)
         this->erase(first, last);
      else
         this->insert(last, f, l);
      return *this;
   }

   template <class ForwardIter>
   basic_string& priv_replace(iterator first, iterator last,
                              ForwardIter f, ForwardIter l, 
                              std::forward_iterator_tag)
   {
      difference_type n = std::distance(f, l);
      const difference_type len = last - first;
      if (len >= n) {
         this->priv_copy(f, l, first);
        this->erase(first + n, last);
      }
      else {
         ForwardIter m = f;
         std::advance(m, len);
         this->priv_copy(f, m, first);
         this->insert(last, m, l);
      }
      return *this;
   }
   /// @endcond
};

template <class CharT, class Traits, class A> 
const typename basic_string<CharT,Traits,A>::size_type 
basic_string<CharT,Traits,A>::npos 
  = (typename basic_string<CharT,Traits,A>::size_type) -1;

// ------------------------------------------------------------
// Non-member functions.

// Operator+

template <class CharT, class Traits, class A>
inline basic_string<CharT,Traits,A>
operator+(const basic_string<CharT,Traits,A>& x,
          const basic_string<CharT,Traits,A>& y)
{
   typedef basic_string<CharT,Traits,A> str_t;
   typedef typename str_t::reserve_t reserve_t;
   reserve_t reserve;
   str_t result(reserve, x.size() + y.size(), x.alloc());
   result.append(x);
   result.append(y);
   return result;
}

#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
template <class CharT, class Traits, class A>
inline detail::moved_object<basic_string<CharT,Traits,A> >
operator+(const detail::moved_object<basic_string<CharT,Traits,A> >& mx,
          const basic_string<CharT,Traits,A>& y)
{
   mx.get() += y;
   return mx;
}
#else
template <class CharT, class Traits, class A>
basic_string<CharT,Traits,A> &&
operator+(basic_string<CharT,Traits,A> && mx,
          const basic_string<CharT,Traits,A>& y)
{
   mx += y;
   return move(mx);
}
#endif

#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
template <class CharT, class Traits, class A>
inline detail::moved_object<basic_string<CharT,Traits,A> >
operator+(const basic_string<CharT,Traits,A>& x,
          const detail::moved_object<basic_string<CharT,Traits,A> >& my)
{
   typedef typename basic_string<CharT,Traits,A>::size_type size_type;
	return my.get().replace(size_type(0), size_type(0), x);
}
#else
template <class CharT, class Traits, class A>
inline basic_string<CharT,Traits,A> &&
operator+(const basic_string<CharT,Traits,A>& x,
          basic_string<CharT,Traits,A> && my)
{
   typedef typename basic_string<CharT,Traits,A>::size_type size_type;
	return my.replace(size_type(0), size_type(0), x);
}
#endif

template <class CharT, class Traits, class A>
inline basic_string<CharT,Traits,A>
operator+(const CharT* s, const basic_string<CharT,Traits,A>& y) 
{
   typedef basic_string<CharT,Traits,A> str_t;
   typedef typename str_t::reserve_t reserve_t;
   reserve_t reserve;
   const std::size_t n = Traits::length(s);
   str_t result(reserve, n + y.size());
   result.append(s, s + n);
   result.append(y);
   return result;
}

#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
template <class CharT, class Traits, class A>
inline detail::moved_object<basic_string<CharT,Traits,A> >
operator+(const CharT* s,
          const detail::moved_object<basic_string<CharT,Traits,A> >& my)
{
   typedef typename basic_string<CharT,Traits,A>::size_type size_type;
	return my.get().replace(size_type(0), size_type(0), s);
}
#else
template <class CharT, class Traits, class A>
inline basic_string<CharT,Traits,A> &&
operator+(const CharT* s,
          basic_string<CharT,Traits,A> && my)
{
   typedef typename basic_string<CharT,Traits,A>::size_type size_type;
	return move(my.get().replace(size_type(0), size_type(0), s));
}
#endif

template <class CharT, class Traits, class A>
inline basic_string<CharT,Traits,A>
operator+(CharT c, const basic_string<CharT,Traits,A>& y) 
{
   typedef basic_string<CharT,Traits,A> str_t;
   typedef typename str_t::reserve_t reserve_t;
   reserve_t reserve;
   str_t result(reserve, 1 + y.size());
   result.push_back(c);
   result.append(y);
   return result;
}

#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
template <class CharT, class Traits, class A>
inline detail::moved_object<basic_string<CharT,Traits,A> >
operator+(CharT c,
          const detail::moved_object<basic_string<CharT,Traits,A> >& my)
{
   typedef typename basic_string<CharT,Traits,A>::size_type size_type;
	return my.get().replace(size_type(0), size_type(0), &c, &c + 1);
}
#else
template <class CharT, class Traits, class A>
inline basic_string<CharT,Traits,A> &&
operator+(CharT c,
          basic_string<CharT,Traits,A> && my)
{
   typedef typename basic_string<CharT,Traits,A>::size_type size_type;
	return my.replace(size_type(0), size_type(0), &c, &c + 1);
}
#endif

template <class CharT, class Traits, class A>
inline basic_string<CharT,Traits,A>
operator+(const basic_string<CharT,Traits,A>& x, const CharT* s) 
{
   typedef basic_string<CharT,Traits,A> str_t;
   typedef typename str_t::reserve_t reserve_t;
   reserve_t reserve;
   const std::size_t n = Traits::length(s);
   str_t result(reserve, x.size() + n, x.alloc());
   result.append(x);
   result.append(s, s + n);
   return result;
}

#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
template <class CharT, class Traits, class A>
inline detail::moved_object<basic_string<CharT,Traits,A> >
operator+(const detail::moved_object<basic_string<CharT,Traits,A> >& mx,
          const CharT* s)
{
   mx.get() += s;
   return mx;
}
#else
template <class CharT, class Traits, class A>
basic_string<CharT,Traits,A> &&
operator+(basic_string<CharT,Traits,A> && mx,
          const CharT* s)
{
   mx += s;
   return move(mx);
}
#endif

template <class CharT, class Traits, class A>
inline basic_string<CharT,Traits,A>
operator+(const basic_string<CharT,Traits,A>& x, const CharT c) 
{
  typedef basic_string<CharT,Traits,A> str_t;
  typedef typename str_t::reserve_t reserve_t;
   reserve_t reserve;
   str_t result(reserve, x.size() + 1, x.alloc());
   result.append(x);
   result.push_back(c);
   return result;
}

#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
template <class CharT, class Traits, class A>
inline detail::moved_object<basic_string<CharT,Traits,A> >
operator+(const detail::moved_object<basic_string<CharT,Traits,A> >& mx,
          const CharT c)
{
   mx.get() += c;
   return mx;
}
#else
template <class CharT, class Traits, class A>
basic_string<CharT,Traits,A> &&
operator+(basic_string<CharT,Traits,A> && mx, const CharT c)
{
   mx += c;
   return move(mx);
}
#endif

// Operator== and operator!=

template <class CharT, class Traits, class A>
inline bool
operator==(const basic_string<CharT,Traits,A>& x,
           const basic_string<CharT,Traits,A>& y) 
{
   return x.size() == y.size() &&
          Traits::compare(x.data(), y.data(), x.size()) == 0;
}

template <class CharT, class Traits, class A>
inline bool
operator==(const CharT* s, const basic_string<CharT,Traits,A>& y) 
{
   std::size_t n = Traits::length(s);
   return n == y.size() && Traits::compare(s, y.data(), n) == 0;
}

template <class CharT, class Traits, class A>
inline bool
operator==(const basic_string<CharT,Traits,A>& x, const CharT* s) 
{
   std::size_t n = Traits::length(s);
   return x.size() == n && Traits::compare(x.data(), s, n) == 0;
}

template <class CharT, class Traits, class A>
inline bool
operator!=(const basic_string<CharT,Traits,A>& x,
           const basic_string<CharT,Traits,A>& y) 
   {  return !(x == y);  }

template <class CharT, class Traits, class A>
inline bool
operator!=(const CharT* s, const basic_string<CharT,Traits,A>& y) 
   {  return !(s == y); }

template <class CharT, class Traits, class A>
inline bool
operator!=(const basic_string<CharT,Traits,A>& x, const CharT* s) 
   {  return !(x == s);   }


// Operator< (and also >, <=, and >=).

template <class CharT, class Traits, class A>
inline bool
operator<(const basic_string<CharT,Traits,A>& x,
          const basic_string<CharT,Traits,A>& y) 
{
   return x.compare(y) < 0;
//   return basic_string<CharT,Traits,A>
//      ::s_compare(x.begin(), x.end(), y.begin(), y.end()) < 0;
}

template <class CharT, class Traits, class A>
inline bool
operator<(const CharT* s, const basic_string<CharT,Traits,A>& y) 
{
   return y.compare(s) > 0;
//   std::size_t n = Traits::length(s);
//   return basic_string<CharT,Traits,A>
//          ::s_compare(s, s + n, y.begin(), y.end()) < 0;
}

template <class CharT, class Traits, class A>
inline bool
operator<(const basic_string<CharT,Traits,A>& x,
          const CharT* s) 
{
   return x.compare(s) < 0;
//   std::size_t n = Traits::length(s);
//   return basic_string<CharT,Traits,A>
//      ::s_compare(x.begin(), x.end(), s, s + n) < 0;
}

template <class CharT, class Traits, class A>
inline bool
operator>(const basic_string<CharT,Traits,A>& x,
          const basic_string<CharT,Traits,A>& y) {
   return y < x;
}

template <class CharT, class Traits, class A>
inline bool
operator>(const CharT* s, const basic_string<CharT,Traits,A>& y) {
   return y < s;
}

template <class CharT, class Traits, class A>
inline bool
operator>(const basic_string<CharT,Traits,A>& x, const CharT* s) 
{
   return s < x;
}

template <class CharT, class Traits, class A>
inline bool
operator<=(const basic_string<CharT,Traits,A>& x,
           const basic_string<CharT,Traits,A>& y) 
{
  return !(y < x);
}

template <class CharT, class Traits, class A>
inline bool
operator<=(const CharT* s, const basic_string<CharT,Traits,A>& y) 
   {  return !(y < s);  }

template <class CharT, class Traits, class A>
inline bool
operator<=(const basic_string<CharT,Traits,A>& x, const CharT* s) 
   {  return !(s < x);  }

template <class CharT, class Traits, class A>
inline bool
operator>=(const basic_string<CharT,Traits,A>& x,
           const basic_string<CharT,Traits,A>& y) 
   {  return !(x < y);  }

template <class CharT, class Traits, class A>
inline bool
operator>=(const CharT* s, const basic_string<CharT,Traits,A>& y) 
   {  return !(s < y);  }

template <class CharT, class Traits, class A>
inline bool
operator>=(const basic_string<CharT,Traits,A>& x, const CharT* s) 
   {  return !(x < s);  }

// Swap.
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
template <class CharT, class Traits, class A>
inline void swap(basic_string<CharT,Traits,A>& x,
                 basic_string<CharT,Traits,A>& y) 
{  x.swap(y);  }

template <class CharT, class Traits, class A>
inline void swap(const detail::moved_object<basic_string<CharT,Traits,A> >& mx,
                 basic_string<CharT,Traits,A>& y) 
{  mx.get().swap(y);  }

template <class CharT, class Traits, class A>
inline void swap(basic_string<CharT,Traits,A>& x,
                 const detail::moved_object<basic_string<CharT,Traits,A> >& my) 
{  x.swap(my.get());  }
#else
template <class CharT, class Traits, class A>
inline void swap(basic_string<CharT,Traits,A> && x,
                 basic_string<CharT,Traits,A> &&y) 
{  x.swap(y);  }
#endif

/// @cond
// I/O.  
namespace detail {

template <class CharT, class Traits>
inline bool
interprocess_string_fill(std::basic_ostream<CharT, Traits>& os,
                  std::basic_streambuf<CharT, Traits>* buf,
                  std::size_t n)
{
   CharT f = os.fill();
   std::size_t i;
   bool ok = true;

   for (i = 0; i < n; i++)
      ok = ok && !Traits::eq_int_type(buf->sputc(f), Traits::eof());
   return ok;
}

}  //namespace detail {
/// @endcond

template <class CharT, class Traits, class A>
std::basic_ostream<CharT, Traits>&
operator<<(std::basic_ostream<CharT, Traits>& os, 
            #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
           const basic_string<CharT,Traits,A>& s)
            #else
           const basic_string<CharT,Traits,A>&&s)
           #endif
{
   typename std::basic_ostream<CharT, Traits>::sentry sentry(os);
   bool ok = false;

   if (sentry) {
      ok = true;
      std::size_t n = s.size();
      std::size_t pad_len = 0;
      const bool left = (os.flags() & std::ios::left) != 0;
      const std::size_t w = os.width(0);
      std::basic_streambuf<CharT, Traits>* buf = os.rdbuf();

      if (w != 0 && n < w)
         pad_len = w - n;
       
      if (!left)
         ok = detail::interprocess_string_fill(os, buf, pad_len);    

      ok = ok && 
            buf->sputn(s.data(), std::streamsize(n)) == std::streamsize(n);

      if (left)
         ok = ok && detail::interprocess_string_fill(os, buf, pad_len);
   }

   if (!ok)
      os.setstate(std::ios_base::failbit);

   return os;
}

#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
template <class CharT, class Traits, class A>
std::basic_ostream<CharT, Traits>&
operator<<(std::basic_ostream<CharT, Traits>& os, 
           const detail::moved_object<basic_string<CharT,Traits,A> >& ms)
{  return os << ms.get();  }
#endif


template <class CharT, class Traits, class A>
std::basic_istream<CharT, Traits>& 
operator>>(std::basic_istream<CharT, Traits>& is,
            #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
           basic_string<CharT,Traits,A>& s)
            #else
           basic_string<CharT,Traits,A>&&s)
            #endif
{
   typename std::basic_istream<CharT, Traits>::sentry sentry(is);

   if (sentry) {
      std::basic_streambuf<CharT, Traits>* buf = is.rdbuf();
      const std::ctype<CharT>& ctype = std::use_facet<std::ctype<CharT> >(is.getloc());

      s.clear();
      std::size_t n = is.width(0);
      if (n == 0)
         n = static_cast<std::size_t>(-1);
      else
         s.reserve(n);

      while (n-- > 0) {
         typename Traits::int_type c1 = buf->sbumpc();

         if (Traits::eq_int_type(c1, Traits::eof())) {
            is.setstate(std::ios_base::eofbit);
            break;
         }
         else {
            CharT c = Traits::to_char_type(c1);

            if (ctype.is(std::ctype<CharT>::space, c)) {
               if (Traits::eq_int_type(buf->sputbackc(c), Traits::eof()))
                  is.setstate(std::ios_base::failbit);
               break;
            }
            else
               s.push_back(c);
         }
      }
      
      // If we have read no characters, then set failbit.
      if (s.size() == 0)
         is.setstate(std::ios_base::failbit);
   }
   else
      is.setstate(std::ios_base::failbit);

   return is;
}

#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
template <class CharT, class Traits, class A>
std::basic_istream<CharT, Traits>& 
operator>>(std::basic_istream<CharT, Traits>& is,
           const detail::moved_object<basic_string<CharT,Traits,A> >& ms)
{  return is >> ms.get();  }
#endif

template <class CharT, class Traits, class A>    
std::basic_istream<CharT, Traits>& 
getline(std::istream& is,
         #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
        basic_string<CharT,Traits,A>& s,
         #else
        basic_string<CharT,Traits,A>&&s,
         #endif
        CharT delim)
{
   std::size_t nread = 0;
   typename std::basic_istream<CharT, Traits>::sentry sentry(is, true);
   if (sentry) {
      std::basic_streambuf<CharT, Traits>* buf = is.rdbuf();
      s.clear();

      int c1;
      while (nread < s.max_size()) {
         int c1 = buf->sbumpc();
         if (Traits::eq_int_type(c1, Traits::eof())) {
            is.setstate(std::ios_base::eofbit);
            break;
         }
         else {
            ++nread;
            CharT c = Traits::to_char_type(c1);
            if (!Traits::eq(c, delim)) 
               s.push_back(c);
            else
               break;              // Character is extracted but not appended.
         }
      }
   }
   if (nread == 0 || nread >= s.max_size())
      is.setstate(std::ios_base::failbit);

   return is;
}

#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
template <class CharT, class Traits, class A>    
std::basic_istream<CharT, Traits>& 
getline(std::istream& is,
        const detail::moved_object<basic_string<CharT,Traits,A> >& ms,
        CharT delim)
{  return getline(is, ms.get(), delim);   }
#endif

#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
template <class CharT, class Traits, class A>    
inline std::basic_istream<CharT, Traits>& 
getline(std::basic_istream<CharT, Traits>& is,
        basic_string<CharT,Traits,A>& s)
{
   return getline(is, s, '\n');
}

template <class CharT, class Traits, class A>    
std::basic_istream<CharT, Traits>& 
getline(std::istream& is,
        const detail::moved_object<basic_string<CharT,Traits,A> >& ms)
{  return getline(is, ms.get());   }
#else
template <class CharT, class Traits, class A>    
std::basic_istream<CharT, Traits>& 
getline(std::istream& is,
        basic_string<CharT,Traits,A> && ms)
{  return getline(is, ms);   }
#endif

template <class Ch, class A>
inline std::size_t hash_value(basic_string<Ch, std::char_traits<Ch>, A> const& v)
{
   return hash_range(v.begin(), v.end());
}

/// @cond

//!This class is movable
template <class C, class T, class A>
struct is_movable<basic_string<C, T, A> >
{
   enum {   value = true };
};

//!This class is movable
template <class A>
struct is_movable<detail::basic_string_base<A> >
{
   enum {   value = true };
};

//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class C, class T, class A>
struct has_trivial_destructor_after_move<basic_string<C, T, A> >
{
   enum {   value = has_trivial_destructor<A>::value  };
};
/// @endcond

}} //namespace boost {  namespace interprocess

#include <boost/interprocess/detail/config_end.hpp>

#endif // BOOST_INTERPROCESS_STRING_HPP