Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

Click here to view the latest version of this page.
PrevUpHomeNext

Class template sgtree

boost::intrusive::sgtree

Synopsis

template<typename T, class... Options> 
class sgtree {
public:
  // types
  typedef Config::value_traits                                  value_traits;          
  typedef real_value_traits::pointer                            pointer;               
  typedef real_value_traits::const_pointer                      const_pointer;         
  typedef std::iterator_traits< pointer >::value_type           value_type;            
  typedef value_type                                            key_type;              
  typedef std::iterator_traits< pointer >::reference            reference;             
  typedef std::iterator_traits< const_pointer >::reference      const_reference;       
  typedef std::iterator_traits< pointer >::difference_type      difference_type;       
  typedef Config::size_type                                     size_type;             
  typedef Config::compare                                       value_compare;         
  typedef value_compare                                         key_compare;           
  typedef tree_iterator< sgtree, false >                        iterator;              
  typedef tree_iterator< sgtree, true >                         const_iterator;        
  typedef std::reverse_iterator< iterator >                     reverse_iterator;      
  typedef std::reverse_iterator< const_iterator >               const_reverse_iterator;
  typedef real_value_traits::node_traits                        node_traits;           
  typedef node_traits::node                                     node;                  
  typedef boost::pointer_to_other< pointer, node >::type        node_ptr;              
  typedef boost::pointer_to_other< node_ptr, const node >::type const_node_ptr;        
  typedef sgtree_algorithms< node_traits >                      node_algorithms;       
  typedef node_algorithms::insert_commit_data                   insert_commit_data;    

  // construct/copy/destruct
  sgtree(value_compare = value_compare(), 
         const value_traits & = value_traits());
  template<typename Iterator> 
    sgtree(bool, Iterator, Iterator, value_compare = value_compare(), 
           const value_traits & = value_traits());
  ~sgtree();

  // public member functions
  const real_value_traits & get_real_value_traits() const;
  real_value_traits & get_real_value_traits() ;
  iterator begin() ;
  const_iterator begin() const;
  const_iterator cbegin() const;
  iterator end() ;
  const_iterator end() const;
  const_iterator cend() const;
  reverse_iterator rbegin() ;
  const_reverse_iterator rbegin() const;
  const_reverse_iterator crbegin() const;
  reverse_iterator rend() ;
  const_reverse_iterator rend() const;
  const_reverse_iterator crend() const;
  value_compare value_comp() const;
  bool empty() const;
  size_type size() const;
  void swap(sgtree &) ;
  iterator insert_equal(reference) ;
  iterator insert_equal(const_iterator, reference) ;
  template<typename Iterator> void insert_equal(Iterator, Iterator) ;
  std::pair< iterator, bool > insert_unique(reference) ;
  iterator insert_unique(const_iterator, reference) ;
  template<typename Iterator> void insert_unique(Iterator, Iterator) ;
  std::pair< iterator, bool > 
  insert_unique_check(const_reference, insert_commit_data &) ;
  template<typename KeyType, typename KeyValueCompare> 
    std::pair< iterator, bool > 
    insert_unique_check(const KeyType &, KeyValueCompare, 
                        insert_commit_data &) ;
  std::pair< iterator, bool > 
  insert_unique_check(const_iterator, const_reference, insert_commit_data &) ;
  template<typename KeyType, typename KeyValueCompare> 
    std::pair< iterator, bool > 
    insert_unique_check(const_iterator, const KeyType &, KeyValueCompare, 
                        insert_commit_data &) ;
  iterator insert_unique_commit(reference, const insert_commit_data &) ;
  iterator erase(iterator) ;
  iterator erase(iterator, iterator) ;
  size_type erase(const_reference) ;
  template<typename KeyType, typename KeyValueCompare> 
    size_type erase(const KeyType &, KeyValueCompare) ;
  template<typename Disposer> iterator erase_and_dispose(iterator, Disposer) ;
  template<typename Disposer> 
    iterator erase_and_dispose(iterator, iterator, Disposer) ;
  template<typename Disposer> 
    size_type erase_and_dispose(const_reference, Disposer) ;
  template<typename KeyType, typename KeyValueCompare, typename Disposer> 
    size_type erase_and_dispose(const KeyType &, KeyValueCompare, Disposer) ;
  void clear() ;
  template<typename Disposer> void clear_and_dispose(Disposer) ;
  size_type count(const_reference) const;
  template<typename KeyType, typename KeyValueCompare> 
    size_type count(const KeyType &, KeyValueCompare) const;
  iterator lower_bound(const_reference) ;
  const_iterator lower_bound(const_reference) const;
  template<typename KeyType, typename KeyValueCompare> 
    iterator lower_bound(const KeyType &, KeyValueCompare) ;
  template<typename KeyType, typename KeyValueCompare> 
    const_iterator lower_bound(const KeyType &, KeyValueCompare) const;
  iterator upper_bound(const_reference) ;
  template<typename KeyType, typename KeyValueCompare> 
    iterator upper_bound(const KeyType &, KeyValueCompare) ;
  const_iterator upper_bound(const_reference) const;
  template<typename KeyType, typename KeyValueCompare> 
    const_iterator upper_bound(const KeyType &, KeyValueCompare) const;
  iterator find(const_reference) ;
  template<typename KeyType, typename KeyValueCompare> 
    iterator find(const KeyType &, KeyValueCompare) ;
  const_iterator find(const_reference) const;
  template<typename KeyType, typename KeyValueCompare> 
    const_iterator find(const KeyType &, KeyValueCompare) const;
  std::pair< iterator, iterator > equal_range(const_reference) ;
  template<typename KeyType, typename KeyValueCompare> 
    std::pair< iterator, iterator > 
    equal_range(const KeyType &, KeyValueCompare) ;
  std::pair< const_iterator, const_iterator > 
  equal_range(const_reference) const;
  template<typename KeyType, typename KeyValueCompare> 
    std::pair< const_iterator, const_iterator > 
    equal_range(const KeyType &, KeyValueCompare) const;
  template<typename Cloner, typename Disposer> 
    void clone_from(const sgtree &, Cloner, Disposer) ;
  pointer unlink_leftmost_without_rebalance() ;
  void replace_node(iterator, reference) ;
  iterator iterator_to(reference) ;
  const_iterator iterator_to(const_reference) const;
  void rebalance() ;
  iterator rebalance_subtree(iterator) ;
  float balance_factor() const;
  void balance_factor(float) ;

  // public static functions
  static sgtree & container_from_end_iterator(iterator) ;
  static const sgtree & container_from_end_iterator(const_iterator) ;
  static iterator s_iterator_to(reference) ;
  static const_iterator s_iterator_to(const_reference) ;
  static void init_node(reference) ;

  // private static functions
  static sgtree & priv_container_from_end_iterator(const const_iterator &) ;
  static const bool floating_point;
  static const bool constant_time_size;
  static const bool stateful_value_traits;
};

Description

The class template sgtree is an intrusive scapegoat tree container, that is used to construct intrusive sg_set and sg_multiset containers. The no-throw guarantee holds only, if the value_compare object doesn't throw.

The template parameter T is the type to be managed by the container. The user can specify additional options and if no options are provided default options are used.

The container supports the following options: base_hook<>/member_hook<>/value_traits<>, floating_point<>, size_type<> and compare<>.

sgtree public construct/copy/destruct

  1. sgtree(value_compare cmp = value_compare(), 
           const value_traits & v_traits = value_traits());

    Effects: Constructs an empty tree.

    Complexity: Constant.

    Throws: Nothing unless the copy constructor of the value_compare object throws.

  2. template<typename Iterator> 
      sgtree(bool unique, Iterator b, Iterator e, 
             value_compare cmp = value_compare(), 
             const value_traits & v_traits = value_traits());

    Requires: Dereferencing iterator must yield an lvalue of type value_type. cmp must be a comparison function that induces a strict weak ordering.

    Effects: Constructs an empty tree and inserts elements from [b, e).

    Complexity: Linear in N if [b, e) is already sorted using comp and otherwise N * log N, where N is the distance between first and last.

    Throws: Nothing unless the copy constructor of the value_compare object throws.

  3. ~sgtree();

    Effects: Detaches all elements from this. The objects in the set are not deleted (i.e. no destructors are called), but the nodes according to the value_traits template parameter are reinitialized and thus can be reused.

    Complexity: Linear to elements contained in *this.

    Throws: Nothing.

sgtree public member functions

  1. const real_value_traits & get_real_value_traits() const;
  2. real_value_traits & get_real_value_traits() ;
  3. iterator begin() ;

    Effects: Returns an iterator pointing to the beginning of the tree.

    Complexity: Constant.

    Throws: Nothing.

  4. const_iterator begin() const;

    Effects: Returns a const_iterator pointing to the beginning of the tree.

    Complexity: Constant.

    Throws: Nothing.

  5. const_iterator cbegin() const;

    Effects: Returns a const_iterator pointing to the beginning of the tree.

    Complexity: Constant.

    Throws: Nothing.

  6. iterator end() ;

    Effects: Returns an iterator pointing to the end of the tree.

    Complexity: Constant.

    Throws: Nothing.

  7. const_iterator end() const;

    Effects: Returns a const_iterator pointing to the end of the tree.

    Complexity: Constant.

    Throws: Nothing.

  8. const_iterator cend() const;

    Effects: Returns a const_iterator pointing to the end of the tree.

    Complexity: Constant.

    Throws: Nothing.

  9. reverse_iterator rbegin() ;

    Effects: Returns a reverse_iterator pointing to the beginning of the reversed tree.

    Complexity: Constant.

    Throws: Nothing.

  10. const_reverse_iterator rbegin() const;

    Effects: Returns a const_reverse_iterator pointing to the beginning of the reversed tree.

    Complexity: Constant.

    Throws: Nothing.

  11. const_reverse_iterator crbegin() const;

    Effects: Returns a const_reverse_iterator pointing to the beginning of the reversed tree.

    Complexity: Constant.

    Throws: Nothing.

  12. reverse_iterator rend() ;

    Effects: Returns a reverse_iterator pointing to the end of the reversed tree.

    Complexity: Constant.

    Throws: Nothing.

  13. const_reverse_iterator rend() const;

    Effects: Returns a const_reverse_iterator pointing to the end of the reversed tree.

    Complexity: Constant.

    Throws: Nothing.

  14. const_reverse_iterator crend() const;

    Effects: Returns a const_reverse_iterator pointing to the end of the reversed tree.

    Complexity: Constant.

    Throws: Nothing.

  15. value_compare value_comp() const;

    Effects: Returns the value_compare object used by the tree.

    Complexity: Constant.

    Throws: If value_compare copy-constructor throws.

  16. bool empty() const;

    Effects: Returns true is the container is empty.

    Complexity: Constant.

    Throws: Nothing.

  17. size_type size() const;

    Effects: Returns the number of elements stored in the tree.

    Complexity: Linear to elements contained in *this.

    Throws: Nothing.

  18. void swap(sgtree & other) ;

    Effects: Swaps the contents of two multisets.

    Complexity: Constant.

    Throws: If the comparison functor's swap call throws.

  19. iterator insert_equal(reference value) ;

    Requires: value must be an lvalue

    Effects: Inserts value into the tree before the upper bound.

    Complexity: Average complexity for insert element is at most logarithmic.

    Throws: Nothing.

    Note: Does not affect the validity of iterators and references. No copy-constructors are called.

  20. iterator insert_equal(const_iterator hint, reference value) ;

    Requires: value must be an lvalue, and "hint" must be a valid iterator.

    Effects: Inserts x into the tree, using "hint" as a hint to where it will be inserted. If "hint" is the upper_bound the insertion takes constant time (two comparisons in the worst case)

    Complexity: Logarithmic in general, but it is amortized constant time if t is inserted immediately before hint.

    Throws: Nothing.

    Note: Does not affect the validity of iterators and references. No copy-constructors are called.

  21. template<typename Iterator> void insert_equal(Iterator b, Iterator e) ;

    Requires: Dereferencing iterator must yield an lvalue of type value_type.

    Effects: Inserts a each element of a range into the tree before the upper bound of the key of each element.

    Complexity: Insert range is in general O(N * log(N)), where N is the size of the range. However, it is linear in N if the range is already sorted by value_comp().

    Throws: Nothing.

    Note: Does not affect the validity of iterators and references. No copy-constructors are called.

  22. std::pair< iterator, bool > insert_unique(reference value) ;

    Requires: value must be an lvalue

    Effects: Inserts value into the tree if the value is not already present.

    Complexity: Average complexity for insert element is at most logarithmic.

    Throws: Nothing.

    Note: Does not affect the validity of iterators and references. No copy-constructors are called.

  23. iterator insert_unique(const_iterator hint, reference value) ;

    Requires: value must be an lvalue, and "hint" must be a valid iterator

    Effects: Tries to insert x into the tree, using "hint" as a hint to where it will be inserted.

    Complexity: Logarithmic in general, but it is amortized constant time (two comparisons in the worst case) if t is inserted immediately before hint.

    Throws: Nothing.

    Note: Does not affect the validity of iterators and references. No copy-constructors are called.

  24. template<typename Iterator> void insert_unique(Iterator b, Iterator e) ;

    Requires: Dereferencing iterator must yield an lvalue of type value_type.

    Effects: Tries to insert each element of a range into the tree.

    Complexity: Insert range is in general O(N * log(N)), where N is the size of the range. However, it is linear in N if the range is already sorted by value_comp().

    Throws: Nothing.

    Note: Does not affect the validity of iterators and references. No copy-constructors are called.

  25. std::pair< iterator, bool > 
    insert_unique_check(const_reference value, insert_commit_data & commit_data) ;
  26. template<typename KeyType, typename KeyValueCompare> 
      std::pair< iterator, bool > 
      insert_unique_check(const KeyType & key, KeyValueCompare key_value_comp, 
                          insert_commit_data & commit_data) ;
  27. std::pair< iterator, bool > 
    insert_unique_check(const_iterator hint, const_reference value, 
                        insert_commit_data & commit_data) ;
  28. template<typename KeyType, typename KeyValueCompare> 
      std::pair< iterator, bool > 
      insert_unique_check(const_iterator hint, const KeyType & key, 
                          KeyValueCompare key_value_comp, 
                          insert_commit_data & commit_data) ;
  29. iterator insert_unique_commit(reference value, 
                                  const insert_commit_data & commit_data) ;
  30. iterator erase(iterator i) ;

    Effects: Erases the element pointed to by pos.

    Complexity: Average complexity for erase element is constant time.

    Throws: Nothing.

    Note: Invalidates the iterators (but not the references) to the erased elements. No destructors are called.

  31. iterator erase(iterator b, iterator e) ;

    Effects: Erases the range pointed to by b end e.

    Complexity: Average complexity for erase range is at most O(log(size() + N)), where N is the number of elements in the range.

    Throws: Nothing.

    Note: Invalidates the iterators (but not the references) to the erased elements. No destructors are called.

  32. size_type erase(const_reference value) ;

    Effects: Erases all the elements with the given value.

    Returns: The number of erased elements.

    Complexity: O(log(size() + N).

    Throws: Nothing.

    Note: Invalidates the iterators (but not the references) to the erased elements. No destructors are called.

  33. template<typename KeyType, typename KeyValueCompare> 
      size_type erase(const KeyType & key, KeyValueCompare comp) ;

    Effects: Erases all the elements with the given key. according to the comparison functor "comp".

    Returns: The number of erased elements.

    Complexity: O(log(size() + N).

    Throws: Nothing.

    Note: Invalidates the iterators (but not the references) to the erased elements. No destructors are called.

  34. template<typename Disposer> 
      iterator erase_and_dispose(iterator i, Disposer disposer) ;

    Requires: Disposer::operator()(pointer) shouldn't throw.

    Effects: Erases the element pointed to by pos. Disposer::operator()(pointer) is called for the removed element.

    Complexity: Average complexity for erase element is constant time.

    Throws: Nothing.

    Note: Invalidates the iterators to the erased elements.

  35. template<typename Disposer> 
      iterator erase_and_dispose(iterator b, iterator e, Disposer disposer) ;

    Requires: Disposer::operator()(pointer) shouldn't throw.

    Effects: Erases the range pointed to by b end e. Disposer::operator()(pointer) is called for the removed elements.

    Complexity: Average complexity for erase range is at most O(log(size() + N)), where N is the number of elements in the range.

    Throws: Nothing.

    Note: Invalidates the iterators to the erased elements.

  36. template<typename Disposer> 
      size_type erase_and_dispose(const_reference value, Disposer disposer) ;

    Requires: Disposer::operator()(pointer) shouldn't throw.

    Effects: Erases all the elements with the given value. Disposer::operator()(pointer) is called for the removed elements.

    Returns: The number of erased elements.

    Complexity: O(log(size() + N).

    Throws: Nothing.

    Note: Invalidates the iterators (but not the references) to the erased elements. No destructors are called.

  37. template<typename KeyType, typename KeyValueCompare, typename Disposer> 
      size_type erase_and_dispose(const KeyType & key, KeyValueCompare comp, 
                                  Disposer disposer) ;

    Requires: Disposer::operator()(pointer) shouldn't throw.

    Effects: Erases all the elements with the given key. according to the comparison functor "comp". Disposer::operator()(pointer) is called for the removed elements.

    Returns: The number of erased elements.

    Complexity: O(log(size() + N).

    Throws: Nothing.

    Note: Invalidates the iterators to the erased elements.

  38. void clear() ;

    Effects: Erases all of the elements.

    Complexity: Linear to the number of elements on the container. if it's a safe-mode or auto-unlink value_type. Constant time otherwise.

    Throws: Nothing.

    Note: Invalidates the iterators (but not the references) to the erased elements. No destructors are called.

  39. template<typename Disposer> void clear_and_dispose(Disposer disposer) ;

    Effects: Erases all of the elements calling disposer(p) for each node to be erased. Complexity: Average complexity for is at most O(log(size() + N)), where N is the number of elements in the container.

    Throws: Nothing.

    Note: Invalidates the iterators (but not the references) to the erased elements. Calls N times to disposer functor.

  40. size_type count(const_reference value) const;

    Effects: Returns the number of contained elements with the given value

    Complexity: Logarithmic to the number of elements contained plus lineal to number of objects with the given value.

    Throws: Nothing.

  41. template<typename KeyType, typename KeyValueCompare> 
      size_type count(const KeyType & key, KeyValueCompare comp) const;

    Effects: Returns the number of contained elements with the given key

    Complexity: Logarithmic to the number of elements contained plus lineal to number of objects with the given key.

    Throws: Nothing.

  42. iterator lower_bound(const_reference value) ;

    Effects: Returns an iterator to the first element whose key is not less than k or end() if that element does not exist.

    Complexity: Logarithmic.

    Throws: Nothing.

  43. const_iterator lower_bound(const_reference value) const;

    Effects: Returns an iterator to the first element whose key is not less than k or end() if that element does not exist.

    Complexity: Logarithmic.

    Throws: Nothing.

  44. template<typename KeyType, typename KeyValueCompare> 
      iterator lower_bound(const KeyType & key, KeyValueCompare comp) ;

    Effects: Returns an iterator to the first element whose key is not less than k or end() if that element does not exist.

    Complexity: Logarithmic.

    Throws: Nothing.

  45. template<typename KeyType, typename KeyValueCompare> 
      const_iterator lower_bound(const KeyType & key, KeyValueCompare comp) const;

    Effects: Returns a const iterator to the first element whose key is not less than k or end() if that element does not exist.

    Complexity: Logarithmic.

    Throws: Nothing.

  46. iterator upper_bound(const_reference value) ;

    Effects: Returns an iterator to the first element whose key is greater than k or end() if that element does not exist.

    Complexity: Logarithmic.

    Throws: Nothing.

  47. template<typename KeyType, typename KeyValueCompare> 
      iterator upper_bound(const KeyType & key, KeyValueCompare comp) ;

    Effects: Returns an iterator to the first element whose key is greater than k according to comp or end() if that element does not exist.

    Complexity: Logarithmic.

    Throws: Nothing.

  48. const_iterator upper_bound(const_reference value) const;

    Effects: Returns an iterator to the first element whose key is greater than k or end() if that element does not exist.

    Complexity: Logarithmic.

    Throws: Nothing.

  49. template<typename KeyType, typename KeyValueCompare> 
      const_iterator upper_bound(const KeyType & key, KeyValueCompare comp) const;

    Effects: Returns an iterator to the first element whose key is greater than k according to comp or end() if that element does not exist.

    Complexity: Logarithmic.

    Throws: Nothing.

  50. iterator find(const_reference value) ;

    Effects: Finds an iterator to the first element whose key is k or end() if that element does not exist.

    Complexity: Logarithmic.

    Throws: Nothing.

  51. template<typename KeyType, typename KeyValueCompare> 
      iterator find(const KeyType & key, KeyValueCompare comp) ;

    Effects: Finds an iterator to the first element whose key is k or end() if that element does not exist.

    Complexity: Logarithmic.

    Throws: Nothing.

  52. const_iterator find(const_reference value) const;

    Effects: Finds a const_iterator to the first element whose key is k or end() if that element does not exist.

    Complexity: Logarithmic.

    Throws: Nothing.

  53. template<typename KeyType, typename KeyValueCompare> 
      const_iterator find(const KeyType & key, KeyValueCompare comp) const;

    Effects: Finds a const_iterator to the first element whose key is k or end() if that element does not exist.

    Complexity: Logarithmic.

    Throws: Nothing.

  54. std::pair< iterator, iterator > equal_range(const_reference value) ;

    Effects: Finds a range containing all elements whose key is k or an empty range that indicates the position where those elements would be if they there is no elements with key k.

    Complexity: Logarithmic.

    Throws: Nothing.

  55. template<typename KeyType, typename KeyValueCompare> 
      std::pair< iterator, iterator > 
      equal_range(const KeyType & key, KeyValueCompare comp) ;

    Effects: Finds a range containing all elements whose key is k or an empty range that indicates the position where those elements would be if they there is no elements with key k.

    Complexity: Logarithmic.

    Throws: Nothing.

  56. std::pair< const_iterator, const_iterator > 
    equal_range(const_reference value) const;

    Effects: Finds a range containing all elements whose key is k or an empty range that indicates the position where those elements would be if they there is no elements with key k.

    Complexity: Logarithmic.

    Throws: Nothing.

  57. template<typename KeyType, typename KeyValueCompare> 
      std::pair< const_iterator, const_iterator > 
      equal_range(const KeyType & key, KeyValueCompare comp) const;

    Effects: Finds a range containing all elements whose key is k or an empty range that indicates the position where those elements would be if they there is no elements with key k.

    Complexity: Logarithmic.

    Throws: Nothing.

  58. template<typename Cloner, typename Disposer> 
      void clone_from(const sgtree & src, Cloner cloner, Disposer disposer) ;

    Requires: Disposer::operator()(pointer) shouldn't throw.

    Effects: Erases all the elements from *this calling Disposer::operator()(pointer), clones all the elements from src calling Cloner::operator()(const_reference ) and inserts them on *this.

    If cloner throws, all cloned elements are unlinked and disposed calling Disposer::operator()(pointer).

    Complexity: Linear to erased plus inserted elements.

    Throws: If cloner throws.

  59. pointer unlink_leftmost_without_rebalance() ;

    Effects: Unlinks the leftmost node from the tree.

    Complexity: Average complexity is constant time.

    Throws: Nothing.

    Notes: This function breaks the tree and the tree can only be used for more unlink_leftmost_without_rebalance calls. This function is normally used to achieve a step by step controlled destruction of the tree.

  60. void replace_node(iterator replace_this, reference with_this) ;

    Requires: replace_this must be a valid iterator of *this and with_this must not be inserted in any tree.

    Effects: Replaces replace_this in its position in the tree with with_this. The tree does not need to be rebalanced.

    Complexity: Constant.

    Throws: Nothing.

    Note: This function will break container ordering invariants if with_this is not equivalent to *replace_this according to the ordering rules. This function is faster than erasing and inserting the node, since no rebalancing or comparison is needed.

  61. iterator iterator_to(reference value) ;

    Requires: value must be an lvalue and shall be in a set of appropriate type. Otherwise the behavior is undefined.

    Effects: Returns: a valid iterator i belonging to the set that points to the value

    Complexity: Constant.

    Throws: Nothing.

  62. const_iterator iterator_to(const_reference value) const;

    Requires: value must be an lvalue and shall be in a set of appropriate type. Otherwise the behavior is undefined.

    Effects: Returns: a valid const_iterator i belonging to the set that points to the value

    Complexity: Constant.

    Throws: Nothing.

  63. void rebalance() ;

    Effects: Rebalances the tree.

    Throws: Nothing.

    Complexity: Linear.

  64. iterator rebalance_subtree(iterator root) ;

    Requires: old_root is a node of a tree.

    Effects: Rebalances the subtree rooted at old_root.

    Returns: The new root of the subtree.

    Throws: Nothing.

    Complexity: Linear to the elements in the subtree.

  65. float balance_factor() const;

    Returns: The balance factor (alpha) used in this tree

    Throws: Nothing.

    Complexity: Constant.

  66. void balance_factor(float new_alpha) ;

    Requires: new_alpha must be a value between 0.5 and 1.0

    Effects: Establishes a new balance factor (alpha) and rebalances the tree if the new balance factor is stricter (less) than the old factor.

    Throws: Nothing.

    Complexity: Linear to the elements in the subtree.

sgtree public static functions

  1. static sgtree & container_from_end_iterator(iterator end_iterator) ;

    Precondition: end_iterator must be a valid end iterator of sgtree.

    Effects: Returns a const reference to the sgtree associated to the end iterator

    Throws: Nothing.

    Complexity: Constant.

  2. static const sgtree & 
    container_from_end_iterator(const_iterator end_iterator) ;

    Precondition: end_iterator must be a valid end const_iterator of sgtree.

    Effects: Returns a const reference to the sgtree associated to the end iterator

    Throws: Nothing.

    Complexity: Constant.

  3. static iterator s_iterator_to(reference value) ;

    Requires: value must be an lvalue and shall be in a set of appropriate type. Otherwise the behavior is undefined.

    Effects: Returns: a valid iterator i belonging to the set that points to the value

    Complexity: Constant.

    Throws: Nothing.

    Note: This static function is available only if the value traits is stateless.

  4. static const_iterator s_iterator_to(const_reference value) ;

    Requires: value must be an lvalue and shall be in a set of appropriate type. Otherwise the behavior is undefined.

    Effects: Returns: a valid const_iterator i belonging to the set that points to the value

    Complexity: Constant.

    Throws: Nothing.

    Note: This static function is available only if the value traits is stateless.

  5. static void init_node(reference value) ;

    Requires: value shall not be in a tree.

    Effects: init_node puts the hook of a value in a well-known default state.

    Throws: Nothing.

    Complexity: Constant time.

    Note: This function puts the hook in the well-known default state used by auto_unlink and safe hooks.

sgtree private static functions

  1. static sgtree & 
    priv_container_from_end_iterator(const const_iterator & end_iterator) ;

PrevUpHomeNext