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Mot iva t ion
I felt the need to take a closer look at quaternions when, some time back, I was

looking for new applications to Harthong-Reeb circles (on which I was working at the
time), and came across [D. Pletincks (1989)]. That paper, on one hand, did indicate one
potential application for that method, but, on the other hand, alluded to some odd
constructions involving quaternions, the validity of which was propitiously left in the
shadows. The present text is therefore a compilation of many well-known but apparently
scattered results about quaternions (and related entities), as well as some new
developments, notably the explicit formula for the quaternionic exponential (and friends).
Incidentally, these results enables one to solve the problem found in [D. Pletincks

( 1 9 8 9 )], but without the unsalvageable constructions.

Chapter 1  Quaternions redux

1 -  What to find here
This chapter only contains a quick-and-dirty (but sufficient for most uses)

presentation of the quaternions, along with their most classical properties, inspired
very largely by [D. Leborgne ( 1 9 8 2 )], [J. Lelong-Ferrand, J.M. Arnaudiès ( 1 9 7 8 )] and [M. Berger

( 1 9 9 0 )]. This approach, however, obscures the deep relationship which links the
quaternions, the complex and real numbers and more exotic things known as octonions;
this relationship will be the thrust of the next chapter.

It should be said that other important uses of quaternions exist ( [K. Gürlebeck,

W. Spössig ( 1 9 8 9 )],...), but that they will not be touched upon here. As well, quaternionic
analysis ( [A. Sudbery ( 1 9 7 9 )] ) and geometry ( [S. Salamon ( 1 9 8 2 )]), though perhaps not as
vibrant as their complex counterparts, do keep evolving; though these usually involve
fairly sophisticated mathematical machinery, very nice results can also be had with
very elementary ones ( [P. de Casteljau ( 1 9 8 7 )],...). All are beyond the scope of this article,
however.

2-  The nature of the Beast
Let H = R4  with the usual four-dimensional vector space structure over R . We

define e = ( )1 0 0 0, , , , i = ( )0 1 0 0, , , , j = ( )0 0 1 0, , ,  and k = ( )0 0 0 1, , , .

The first important thing we need is  a multiplication, denoted ∗, which we
define to be a (non-commutative) R -bilinear operation on H such that i i j j k k e∗ = ∗ = ∗ = − ,
i j j i k∗ = − ∗( ) = , j k k j i∗ = − ∗( ) =  and k i i k j∗ = − ∗( ) = .

The second important thing we need is the conjugation  on H (and we will
usually denote by q  the conjugate of q) which we define by   α β γ δ α β γ δ, , , , , ,( ) − − −( )a .
Important properties are that q q q q∗ ′ = ′ ∗ , that e e= , that q q q q∗ = ∗ ∈ ⋅R e  and that
q q+ ∈ ⋅R e. Actually q q∗ = 0  if and only if q = 0 , as is easily seen.

A straightforward verification then shows that H, , ,+ ∗ ⋅( )  is an effectively non-
commutative, but associative, R -algebra with unit e , and that   R H→ ( )[ ], , , ,x xa 0 0 0  and

  C H→ ( ) ( )( )[ ], Re ,Im , ,z z za 0 0  are algebra homomorphisms, bijective from their sources

2

onto their images. The image of the conjugate of a complex number is also seen to be



the conjugate (in H) of the image of that complex, by the above function. We will
therefore assimilate H to a superset of (both) R  and C, and identify e  with 1 and i
with its complex counterpart. We see at once that the operations we have defined on
H extend their counterparts on C and R . The multiplication can then be memorized
thru the well-known formula:

i i j j k k i k∗ = ∗ = ∗ = ∗ ∗ = −j 1

It is important to notice that given any quaternion q  and any rea l number x , we
always have q x x q x q∗ = ∗ = ⋅ .

We will usually write a quaternion under the form q = + + +α β γ δi j k  with α , β ,
γ  and δ  reals, omitting the “⋅” when multiplying a quaternion by a real number (as per
the vector space structure). We will also omit the “∗” when multiplying a quaternion
by a real number, from the left as well as from the right. When no confusion may
arise, we will do away entirely with the “∗” .

With the above notations, the conjugate of q = + + +α β γ δi j k  will then simply be
q = − − −α β γ δi j k .

Looking at H as a 4-dimensional R -vector space, it is easy to see the usual
euclidian scalar product is equal to the following:

p q p q p q pp qq

pq qp

pq qp

( ) = +( ) +( ) − −

= +( )

= +( )

1
2
1
2

All the same, the usual euclidian norm on R4 , coincides with 
  
q q q qa = ∗[ ],

and of course q q q( ) = = + + +2 2 2 2 2α β γ δ . Note that, if q ≠ 0  then q q q q q q q− − −= ∗( ) = ∗( )1 1 1.
For the quaternions, we will also use a notation compatible with real and complex
numbers and define q  as q  (of course, if q  is actually complex, q  has exactly the
value of the modulus of q).

It is important to remember that H, , , ,+ ∗ ⋅( ) is a Banach R -algebra. The norm is
better than what we might expect, though, as we have p q p q∗ =  instead of just
p q p q∗ ≤ .

We will call the real and unreal parts of quaternion, respectively, Re q q q( ) = +( )1
2

and Ur q q q( ) = −( )1
2

. We will say that a quaternion is pure if its real part is zero. For a

complex number, the quaternionic real part is what is already known as the complex
real part, and the unreal part is just the imaginary part multiplied by i .

3



3-  Quaternions’ kin
As we have just seen, quaternions are related to both real numbers and complex

numbers. As we shall see in some details in the next chapter,  quaternions are
actually part of an infinite family of sets1 which we will call the Cayley ladder, some
of which we will introduce here as we will have some need of them for our purposes.

First relative in that family, beyond the quaternions, are the octonions. We
denote by O  the set R8, with its usual vector space structure on R , we identify
1 1 0 0 0 0 0 0 0= ( ), , , , , , , , i = ( )0 1 0 0 0 0 0 0, , , , , , , , j = ( )0 0 1 0 0 0 0 0, , , , , , ,  and k = ( )0 0 0 1 0 0 0 0, , , , , , ,  and we define

′ = ( )e 0 0 0 0 1 0 0 0, , , , , , , , ′ = ( )i 0 0 0 0 0 1 0 0, , , , , , , , ′ = ( )j 0 0 0 0 0 0 1 0, , , , , , ,  and ′ = ( )k 0 0 0 0 0 0 0 1, , , , , , , . We now
consider O  to be a super-set of H. We can now define a multiplication on O  by the
following table (the value at line n  and column m  is the product of the element in the
left column by the element in the top row; for instance i i e∗ ′ = − ′ ):

1

1 1

1

1

1

1

1

i j k e i j k

i j k e i j k

i i k j i e k j

j j k i j k e i

k k j i k j i e

e e i j k i j k

i i e k j i k j

j j

′ ′ ′ ′
′ ′ ′ ′

− − ′ − ′ − ′ ′
− − ′ ′ − ′ − ′

− − ′ − ′ ′ − ′
′ ′ − ′ − ′ − ′ −
′ ′ ′ − ′ ′ − − −
′ ′ ′kk e i j k i

k k j i e k j i

′ − ′ − − −
′ ′ − ′ ′ ′ − − −

1

1

Other presentations, perhaps more useful, exist ( [G. Dixon]). This multiplication still
has a unit (1), but is no longer associative (for instance ′ ∗ ′ ∗( ) = + ≠ − = ′ ∗ ′( ) ∗i e j k k i e j ).
Real numbers still commute with every octonion. We define a conjugation by
α β γ δ ε ζ η θ α β γ δ ε ζ η θ+ + + + ′ + ′ + ′ + ′ = − − − − ′ − ′ − ′ − ′i j k e i j k i j k e i j k , a scalar product and
a norm which, as with the quaternions turn out to be exactly the euclidian scalar
product and euclidian norm on R8. Again, we have just extended the quaternionic
operations. As with complex numbers and quaternions, we have o o o o∗ ′ = ′  for any two
octonions o  and ′o , and an octonion o  is invertible if and only if it is non-zero, and

then o
o

o− =1
2

1
.

Beyond even the octonions, we find R16 , which appears not to have any agreed-upon
name. We shall here call them hexadecimalions, and denote the set by X  (after the
C/C++ notation...). We have the usual vector space structure on R , we identify   1, ,K ′k
with   1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,( ) ( )K  respectively, and define

′′ ′′ ′′ ′′ ′′′ ′′′ ′′′ ′′′e i j k e i j k, , , , , , ,  a s    0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,( ) ( )K

respectively. We define a multiplication on  X  as explicited in the next chapter, for

4

1 Actually, several families, but we will focus on just one here; for others, see [ G. Dixon ( 1 9 9 4 )] .

which 1 is still a unit and for which reals commute with every hexadecimalion. We



define as well a conjugation, a scalar product and a norm (for details, see next
chapter), which once again coincide with the euclidian scalar product and euclidian
norm on R16 . These all extend the octonionic case. However, the product has even
fewer properties than in the octonionic case (the algebra is no longer even alternative2,
as for instance i e i e j j k j i e i e j+ ′′′( ) ∗ + ′′′( ) ∗( ) = − + ≠ − = + ′′′( ) ∗ + ′′′( )( ) ∗2 2 2 ), and the norm is
n o t  e v e n  a n  a l g e b r a  n o r m  a n y  l o n g e r ,  a s  f o r  i n s t a n c e

i j e k i j e k+ ′′( ) ∗ ′ + ′′′( ) = > = + ′′ ′ + ′′′2 2 2
8 4 .

4-  Quaternions and rotations
It is pleasant to think that perhaps the relationship between quaternions and

rotations has been stumbled upon while running a check-list of classical constructs
on the then-newly discovered quaternions. At any rate, the easiest way to explain that
link is thru interior automorphisms.

More precisely, given a non-zero  quaternion q = + + +α β γ δi j k , we can consider
the interior automorphism:

  

λq

p q p q

: H H→
( ) ( )−a 1

These objects have several fundamental properties:   λ λ λqq q q′ ′= o   and λq q q( ) = , λq

leaves R  invariant (since reals commute with all quaternions), and λq respects the
norm on H.

It is interesting to see λq as an R -linear function on H. As it preserves the
norm, it preserves the scalar product, and hence λq ∈ ( )O 4,H . Then, as it leaves R

globally invariant, it must leave its orthogonal (i.e. the unreals) globally invariant.

Consider now the matrix of λq ; expressed in the canonical basis   C = ( )1, , ,i j k  that
matrix is:

  

M C Cλ

α β γ δ
α β γ δ αδ βγ αγ βδ

αδ βγ α β γ δ αβ γδ
αγ βδ αβ γδ α β γ δ

q q
, ,( ) =

+ + +
+ − − − + + +
+ + − + − − +
− + + + − − +










1

0 0 0

0 2 2 2 2

0 2 2 2 2

0 2 2 2 2

2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2










It is quite obvious3 that 
    
Q M C C: , , ; , ,R4 0 4 4− { } → ( ) ( )[ ]M R q qa λ  is continuous, and a

group homomorphism. As we have seen,   Q R R4 0 4− { }( ) ⊂ ( )O , , and as   Q 1 4( ) = I , the identity

5

2 We will define this in the next chapter.

3 We will note M U n m, ,( ) the set of matrices, n  rows by m  columns, with elements in U .

4 More generally, we will denote by In  the identity matrix on Rn .

ma t r i x4 on H R= 4 ,   Q R4 0− { }( ) must actually be included in the connected component of



I4 in O 4,R( ), and that is SO 4,R( ), i.e., λq is a rotation on R4 , and hence on R , where it is
the identity I1, and thus must also be a rotation on 0 3{ } × R , i.e. the unreals. We can find
a far simpler (if somewhat tedious) proof of that by simply computing the determinant
of 

  
M C Cλq , ,( ), which of course turns out to be 1 (also see next section)...

We can therefore extract a rotation matrix on R3 from 
  
M C Cλq , ,( ):

ρ
α β γ δ

α β γ δ αδ βγ αγ βδ
αδ βγ α β γ δ αβ γδ
αγ βδ αβ γδ α β γ δ

q =
+ + +

+ − − − + + +
+ + − + − − +
− + + + − − +

















1
2 2 2 2

2 2 2 2

2 2 2 2
2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

Let us introduce 
    
R : , , ;R4 0 3 3− { } → ( )[ ]M R q qa ρ . It is trivial to see that   Q  and   R

are both C∞  (because they are rational). It is important to note that they are both
R -homogeneous of degree 0 , which means that given any non-zero real number x , λq

and λx q  are identical, and therefore yield identical rotations (i.e. ρ ρq x q= ).

A fundamental result is that   R  is surjective. There are at least two well-known
ways to prove this.

The easiest way also has the advantage of being completely constructive: we
just compute the elements of the rotation ρq .

This is possible because we always know one invariant vector. Indeed (as an
immediate consequence of λq q q( ) = ):

ρ
β
γ
δ

β
γ
δ

q

















=
















Furthermore, the angle, θ π∈[ ]0; , is given by considering the trace of ρq :

1 2
3 2 2 2 2

2 2 2 2+ ( ) = − − −
+ + +

cos θ α β γ δ
α β γ δ

We now exploit the homogeneity of   R , which implies that   R RH S− { }( ) = ( )0 3 , and
therefore that we can restrict our search to un i t quaternions. For unit quaternions,
the trace relation simplifies to 1 2 2+ ( ) =cos θ α .

Therefore, the identity rotation I3  is associated with q = ±1 (which we already
knew), and these unit quaternions only.

Let 
  

r r r
i j k, ,( ) be the canonical basis of R3. Consider now a rotation r ≠ I3  (hence

θ π∈] ]0; ), it possesses a unique rotation axis, and a unique unit vector   
r r r r
u x i y j z k= + +

directing that axis such that   r a u a u u a a
r r r r r r r( ) = − ( )( ) ⋅( ) + ( ) ∧( ) + ( )1 cos sin cosθ θ θ  for all   

r
a ∈R3 . It

6

follows that r  is associated with the two unit quaternions



q

x

y

z

= ±



























































cos

sin

sin

sin

θ

θ

θ

θ

2

2

2

2

and these two unit quaternions only.

The second method is non-constructive, but has the advantage of highlighting
the regularity of the connection between rotations and quaternions, which is harder to
read using the first method.

We once again exploit the homogeneity of   R  and use unit quaternions. Given
that we know that in fact   R S R3( ) ⊂ ( )SO 3, , we can consider 

  
R

S

R
3

SO 3,( )  which is C∞  (because

it is rational). It is slightly tedious, but possible, to prove that in fact 
  
R

S

R
3

SO 3,( )  is a

local diffeomorphism at 1. It is also a group homomorphism (stemming from the fact
that   λ λ λqq q q′ ′= o ). Since in a connected topological group, every neighborhood of the

neutral element is a generator of the whole group ( [G. Pichon ( 1 9 7 3 ), p 31]), 
  
R

S

R
3

SO 3,( )  is

surjective upon the connected component of   I3 1= ( )R  in SO 3,R( ) , i.e. upon SO 3,R( ) , and
of course is everywhere a local diffeomorphism (though it is of course not a global
diffeomorphism).

Combining these two approaches, one finds a global C∞ -diffeomorphism between
SO 3,R( )  and RP3  (which is nothing more than S3  where every couple of opposite points
have been identified).

Another thing worth noting is that 
  
R

S

R
3

SO 3,( )  is more than just a locally diffeomorphic

bijection. If we call σ
S3  the positive Borel measure on S3  induced by H R= 4  and σ SO 3,R( )

that induced on SO 3,R( )  by M R, ,3 3( ) (by assimilation of the rotations with their matrix
in the canonical basis of R3), seen as R9 , then we can compute5 that 

  
R *σ σSO 3,R S( ) = 16 2 3 .

Furthermore, 
  
R

S

R
3

SO 3,( )  actually has no critical point.

7

5 A fact that is supposed to be found, but is not, in [ C.W. Misner, K.S. Thone, J.A. Wheeler ( 1 9 7 3 )] .



5-  Miscellany
As we have seen, the main power of the quaternions is their ability to pleasantly

parameter SO 3,R( ) . It should be said that what is, perhaps their greatest strengths in
this regard, with respect to other parameterization of SO 3,R( )  such as Euler angles, is
that 

  
R

S

R
3

SO 3,( )  has no critical points (no “Gimbal Lock”), and that the composition of

rotations is extremely simple to compute in terms of the parameter. Also and they
can be shown to allow interpolations of orientations under constraints (such has
having one axis stay “horizontal”).

Quaternions also allow a nice parameterization of SO 4,R( ) ( [M. Berger ( 1 9 9 0 )] the
application   S S R3 3 4× → ( ) ( ) [ ]SO , , ,s r q sqra a  is a continuous group homomorphism,
surjective, with kernel 1 1 1 1, , ,( ) − −( ){ }).

Quaternions have other uses, though. For instance, they can be also be used to
parameter SU 2,C( ). More precisely, an isomorphism exists between 0 3{ } × S  and SU 2,C( )
(consider, the application

  

Ψ : , ,H C→ ( )
= + + +

−





M 2 2

q i j k
u v

v u
α β γ δ a

with u i= +α δ  and v i= +γ β  is a ring isomorphism from H on a sub-ring of M C, ,2 2( ),
which induces an isomorphism). There are also applications of quaternions to the
Riemann sphere ( [J. Lelong-Ferrand, J.M. Arnaudiès ( 1 9 7 8 )]).

It should be mentioned that research exists to find more efficient algorithm
for the product of quaternions ( [T. Howell,  J.C. Lafon ( 1 9 7 5 )]), but has so far not reached a
conclusion, one way or the other.

Given the power of the quaternions, the question naturally arises as to whether
something similar can be done for rotations on spaces of higher dimensions (the
multiplication being commutative on the reals and complex numbers, interiors
automorphisms are just the identity). The answer to that question is partly positive,
but it should be now stated that the right tool, in general, for that problem turns out
to be Clifford algebras rather than Cayley algebras.

When we turn to the octonions, the multiplication is not only not associative, it
is no longer even associative. Fortunately, the sub-algebra engendered by any two
elements (and the unity) is still associative, and therefore interior automorphism do
not depend on the order in which the products are carried out. The interesting fact is
that, as with the quaternions, the interior automorphisms leave R  invariant, and
induce a rotation, on R7  this time. The catch is that SO 7,R( ) is a 21-dimentional
manifold, whereas the interior automorphisms we just described only have 7 degrees
of freedom. In short, we do not get all the rotations on R7  by this method. It is still
useful, though, for theoretical purposes.
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Beyond the even the octonions, the hexadecimalions have two different flavors
of interior automorphism,   p q p qa ( )( )( )−1  and 

  
p q p qa ( ) ( )( )−1 , neither of which is, in

general, a rotation (on either R16  or R15). The average of the two isn’t a rotation
either, by the way...

Interior automorphisms having apparently reached the limits of their usefulness,
we turn now to something else, with the same objects. It turns out that we can find
rotations with even simpler constructions!

Let x = ∈α R, then     M x y xy y yx= [ ]( ) = [ ]( ) = [ ]M Ma a, , , ,1 1 1 1 α , hence t M M Ix x x= 1, and
det M x x( ) = . Therefore if x = 1, we find that M Ox ∈ ( )1,R , and we of course get all two
elements of O 1,R( ) that way... but M SOx ∈ ( )1,R  only if x = 1! Obviously, given x ∈R  and

′ ∈x R, M M M M Mxx x x x x′ ′ ′= = .

Let c i= + ∈α β C , then 
    
Mc z cz i i z zc i i= [ ] ( ) ( )( ) = [ ] ( ) ( )( ) =

−
+







M Ma a, , , , , , , ,1 1 1 1

α β
β α

, hence

t M M Ic c c= 2 , and det Mc( ) = +α β2 2 . Therefore if c = 1, M SOc ∈ ( )2,R , and we get all rotations
on R2  that way, as is well-known. And given c ∈C and ′ ∈c C  we still have
M M M M Mcc c c c c′ ′ ′= = .

Let now q = + + + ∈α β γ δi j k H , then:

    

Mq
G p qp i j k i j k= [ ] ( ) ( )( ) =

− − −
+ − +
+ + −
+ − +



















M a , , , , , , , ,1 1

α β γ δ
β α δ γ
γ δ α β
δ γ β α

and

    

Mq
D p pq i j k i j k= [ ] ( ) ( )( ) =

− − −
+ + −
+ − +
+ + −



















M a , , , , , , , ,1 1

α β γ δ
β α δ γ
γ δ α β
δ γ β α

, hence t tM M M M Iq
G

q
G

q
D

q
D q= = 4, and det detM Mq

G
q
D( ) = ( ) = + + +( )α β γ δ2 2 2 2 2

. Therefore if q = 1,

M SOq
G ∈ ( )4,R  and M SOq

D ∈ ( )4,R , but we only get a tiny fraction of SO 4,R( ) that way.

This, of course can be used as an alternate proof that the interior automorphisms
on the quaternions actually induce rotations on R4 .

It is interesting to note that given q ∈H and ′ ∈q H , we still have M M Mqq
G

q
G

q
G

′ ′=

9

and M M Mqq
D

q
D

q
D

′ ′= , though we now sometimes have M M M Mq
G

q
G

q
G

q
G

′ ′≠  and M M M M′ ′≠q
D

q
D

q
D

q
D .



Turning to the octonions, let o i j k e i j k= + + + + ′ + ′ + ′ + ′ ∈α β γ δ ε ζ η θ O, then:

    

Mo
G o oo i j k e i j k i j k e i j k= ′ ′[ ] ′ ′ ′ ′( ) ′ ′ ′ ′( )( ) =

− − − − − − −
+ − + − + + −
+ + − − − + +
+ − + − + −

M a , , , , , , , , , , , , , , , ,1 1

α β γ δ ε ζ η θ
β α δ γ ζ ε θ η
γ δ α β η θ ε ζ
δ γ β α θ η ζζ ε
ε ζ η θ α β γ δ
ζ ε θ η β α δ γ
η θ ε ζ γ δ α β
θ η ζ ε δ γ β α

+
+ + + + − − −
+ − + − + + −
+ − − + + − +
+ + − − + + −

































and

    

Mo
D o o o i j k e i j k i j k e i j k= ′ ′[ ] ′ ′ ′ ′( ) ′ ′ ′ ′( )( ) =

− − − − − − −
+ + − + − − +
+ − + + + − −
+ + − + − +

M a , , , , , , , , , , , , , , , ,1 1

α β γ δ ε ζ η θ
β α δ γ ζ ε θ η
γ δ α β η θ ε ζ
δ γ β α θ η ζζ ε
ε ζ η θ α β γ δ
ζ ε θ η β α δ γ
η θ ε ζ γ δ α β
θ η ζ ε δ γ β α

−
+ − − − + + +
+ + − + − − +
+ + + − − + −
+ − + + − − +

































, hence t tM M M M Io
G

o
G

o
D

o
D o= = 8 , and det detM Mo

G
o
D( ) = ( ) = + + + + + + +( )α β γ δ ε ζ η θ2 2 2 2 2 2 2 2 4

.
Therefore, if o = 1, M SOo

G ∈ ( )8,R  and M SOo
D ∈ ( )8,R . Again, we only get a very tiny fraction

of SO 8,R( ) that way.

Also, and contrary to the case for the real numbers, the complex numbers and
the quaternions, in general M M Moo

G
o
G

o
G

′ ′≠  and M M Moo
D

o
D

o
D

′ ′≠ , due to the non-associativity
of the product on O . For instance, ′ ′ = −i e i , but M M M′ ′ −≠i

G
e
G

i
G  .

If we try to do the same thing with hexadecimalions, we find that neither

    M l hl i j k e i j k e i j k e i j k i j k e i j k e i j k e i ja[ ] ′ ′ ′ ′ ′′ ′′ ′′ ′′ ′′′ ′′′ ′′′ ′′′( ) ′ ′ ′ ′ ′′ ′′ ′′ ′′ ′′′ ′′′ ′′′ ′, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,1 1 ′′′( )( )k  nor its
right-hand version are rotation in general, even if l = 1. That trail ends here as well!
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Chapter 2  Building the Quaternions

1 -  What to find here
This chapter, except for Section 5, only consists of well-known classical

results ( [N. Bourbaki ( A )], [S. Lang (1991)],...). Some have been slightly restated (usually
with simplifications) from their original sources, but hardly anything new is presented
here. In case the sources disagree on definitions, [N. Bourbaki ( A )] will take precedence.

2-  Cayley algebra, alternative algebra
Some of the structures we will be considering will not even be associative. To

save what may be, a weaker structure, which is interesting in its own right is
presented first. An algebra E  is said to be al ternat ive if the following trilinear
application, known as the associator of E , is alternating (which means its value is
zero if two of its arguments are identical):

  

a :

, ,

E E E E× × →
( ) ∗ ∗( ) − ∗( ) ∗x y z x y z x y za

This notion is interesting as, though an alternative algebra is not as wieldy as
an associative algebra, it is such that every sub-algebra engendered by any two
elements i s associative. It also implies that an alternative algebra is a divis ion
algebra (which means that for any x ∈E, x ≠ 0 , the applications   E E→ ∗; y x ya  and

  E E→ ∗; y y xa  are bijective, or that elements are “simplifiable”). In particular the
inverse of a non-zero element (if it exists) is unique in such an algebra.

The meat of this chapter is the following structure.

Let A  be a commutative ring, and E  an algebra over A , not necessarily commutative
or associative, but having a unit element e  (remember that since E  is an A -algebra,
then ∀ ∈( ) ∀ ∈( ) ⋅ = ⋅( ) ∗ = ∗ ⋅( )λ λ λ λA Ex x x xe e ).

A conjugation over E  is any (there may be none) bijective, A -linear, function
σ : E E→  such that:

1 ) σ e e( ) = .

2 ) ∀( ) ∈( ) ∗( ) = ( ) ∗ ( )x y x y y x, E2 σ σ σ  (beware the inversion of x  and y !).

3 ) ∀ ∈( ) + ( )( ) ∈ ⋅x x x eE Aσ  and ∀ ∈( ) ∗ ( )( ) ∈ ⋅x x x eE Aσ .

These properties imply6 ∀ ∈( ) ∗ ( ) = ( ) ∗x x x x xE σ σ , and7   ∀ ∈( ) ( ) =x x xE σ σo .
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6 x x e x x x x x x x x x x x x x x+ ( )( ) ∈ ⋅ ⇒ ∗ ( ) = ∗ + ( )( ) − ∗ = + ( )( ) ∗ − ∗ = ( ) ∗σ σ σ σ σA .

7 Given x ∈E , there exists α ∈A such that x x e+ ( ) = ⋅σ α ; the A -linearity of σ  then implies

  σ σ σ σ σ α σx x x x e( ) + ( ) = + ( )( ) = ⋅ ( )o , and finally, σ e e( ) = .

 We will also write x  for σ x( ).



If E  is such an algebra, and if σ  is a conjugation over E , the structure
E, , , ,+ ∗ ⋅( )σ  is said to be a cayley algebra over A . On such a structure, it is convenient to

consider the cayley trace and cayley norm (an unfortunate misnomer as it is actually
quadratic...), defined respectively by   TE x x x( ) = + ( )σ  and   N E x x x( ) = ∗ ( )σ .

Note that if E,+,∗( )  has no zero divisors, for instance if it is a field, then

  N E x( ) = 0  if and only if x = 0 .

We have the important relations:

  T TE Eσ x x( )( ) = ( )

  N NE Eσ x x( )( ) = ( )

  T Tx y y x∗( ) = ∗( )

  T T T T T N N NE E E E E E E Ex y y x x y x y x y x y∗ ( )( ) = ∗ ( )( ) = ( ) ∗ ( ) − ∗( ) = +( ) − ( ) − ( )σ σ

It is interesting to note that   T Tx y y x∗( ) = ∗( ) regardless of whether or not E  is
associative or commutative. For the cayley norm, no such broad result seem to hold8;
however if E  is alternative, then we also have   N N NE E Ex y x y∗( ) = ( ) ( ).

Finally, the following lemma will be useful for our purposes:

Lemma (Complexoïd): # Given x ∈E, Vect ,A e x( ), the A -module spanned by x  and e , is
stable for ∗; it is a sub-cayley algebra of E  which is both associative and commutative.
If x e∉ ⋅A , let y e x= ⋅ + ⋅α β ,     M y

G u y u e x e x= [ ] ( ) ( )( )M a * , , , ,  and     M y
D u u y e x e x= [ ] ( ) ( )( )M a * , , , , ;

then (with   T ⋅ ( )e x= TE  and   N ⋅ ( )e x= N E )

M M M
N

Ty y
G

y
D= = =

−
+









α β
β β α

. Given z e x∈ ( )Vect , , we have M M M M M M* *y z y z z y z y= = = . $

# This is a simple consequence of the fact that  x x x e∗ = ⋅ − ⋅T N , with   T ⋅ ( )e x= TE  and

  N ⋅ ( )e x= N E ! $

This lemma allows us, in particular, to define unambiguously the n -th power,
with n ∈N, of any x ∈E by the usual recursion rules, we will write the result, as usual
xn. It also trivially induces the following scholie:

Scholie (Powers): # Given x ∈E, and n ∈N, x e xn ∈ ( )Vect ,A  and   N NE Ex xn n( ) = ( )( ) . $

3-  The Cayley doubling procedure
It should be noted that this is simply the plain vanilla version of the doubling

process9; it will suffice here, however.
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8 Indeed, we have seen that such an equality does not hold for hexadecimalions!

9 The general procedure involves abitrary coefficients which parameterize the operations.



Let A  be a commutative ring, and E, , , ,+ ∗ ⋅( )σ  a cayley algebra over A , not
necessarily commutative or associative, with unit element e . Let F E E= ×  and
e eF F= ( ) ∈,0 ; furthermore, let:

  

+ × →
( ) ′ ′( )( ) + ′ + ′( )

F F F F:

, , , ,x y x y x x y ya

  

∗ × →
( ) ′ ′( )( ) ∗ ′ − ′ ∗ ∗ ′ + ′ ∗( )

F F F F:

, , , ,x y x y x x y y y x y xa

  

⋅ × →
( )( ) ⋅ ⋅( )

F A F F:

, , ,λ λ λx y x ya

  

σ
σ

F F F:

, ,

→
( ) ( ) −( )x y x ya

Proposition (Structure): # F F F F, , ,+ ∗ ⋅( )  is an A -algebra, with unit eF, and σ F  is a conjugation
over F; F is associative if and only if E  is both associative and commutative; F is
alternative if and only E  is associative. Furthermore,   T TF Ex y x,( )( ) = ( ) and

  N N NF E Ex y x y,( )( ) = ( ) + ( ). $
Keep in  mind that  s ince F i s  a lso  an  A -a lgebra then

∀ ∈( ) ∀( ) ∈( ) ⋅ ( ) = ⋅( ) ∗ ( ) = ( ) ∗ ⋅( )λ λ λ λA F F F F F F F Fx y x y x y x y, , , ,e e . It is interesting to note that, if
E  is associative, we still have   N N NF F F Fx y x y x y x y, , , ,( ) ∗ ′ ′( )( ) = ( )( ) ′ ′( )( ), even if F is not
associative.

Given the proposition, we can (and will) identify E  with E E× { }0 . Alternatively,
we can identify F with a superset of E . It is also possible to identify A  with a subset
of E  (and hence of F as well), in that case we have noted that all elements of A
commute with all elements of E , for the multiplication in  E , as well as with all
elements of F, for the multiplication in  F, even though E  or F might not be commutative.
With this identification,   T  and   N  have value in A .

4-  R , C, H, O, X ...
We now consider A R=  and E R= , with σ x x( ) =  and e = 1, then   N R x x( ) = 2 is

always positive (and zero if and only x = 0 , as R  is a field). When we build F as above,
we get exactly C, and σ F  is the usual conjugation on C. We define i = ( )0 1; , and as
stated earlier, we identify R  with R × { }0 . As is well known, C is a commutative
field, in particular, real numbers commute with complex numbers. Due to our
identif ications,   TC and   N C have values in R , and actually, if z x y= + i  then

  N N NC R Rz x y x y z( ) = ( ) + ( ) = + = ≥2 2 2 0, and   N C z( ) = 0 if and only if z = 0 . We lose some of
the original properties of R  as we build C, for instance we lose the existence of an
order compatible with the multiplication; we do get new and interesting properties at
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the same time, of course.



Let’s do the doubling again, this time with A R=  and E C= , with the usual
conjugation, and this time we get exactly H, the conjugation being the same as
defined earlier, given the definition of j = ( )0 1;  and k i= ( )0 ; , and the identification of
C with C × { }0 . Once again, we note that, as predicted, for quaternion multiplication,
real numbers commute with quaternions, though some quaternions do not commute
(for instance i j j i∗ ≠ ∗ ). As already stated H is a (non-commutative) field. Once again,
due to our new identifications,   TH  and   N H  have values in R , and actually,   N H  is
always positive and   N H q( ) = 0  if and only if q = 0 . We keep loosing original properties,
most notably the commutativity, when we go from C to H, but the new properties we
gain, notably the link with rotations in R3, which we saw earlier, still makes it
worthwhile. We also see that   TH q q( ) = ( )2 Re  and   N H q q q( ) = =2 2 , as defined earlier.

There being not such thing as too much of a good thing, let’s do the doubling
once again, this time with A R=  and E H= , and the conjugation just built on H. What
the process yields this time is known as the set of (Cayley) octonions, whose symbol
is O . We, as is now usual, identify H with H × { }0 . Yet again, we note that, for
octonion multiplication, real numbers commute with octonions, though some octonions
do not commute (as some quaternions already do not commute). Yet again, due to our
new identifications,   TO  and   N O  have values in R , and actually,   N O  is always positive
and   N O o( ) = 0  if and only if o = 0. The situation keeps deteriorating, though, as this
time the algebra is not associative anymore (but it is still associative). Octonions do
have uses, apart from being an example of a non-associative algebra. They can be used
to find a basis of non-vanishing vector field on S7  (the euclidian unit sphere in R8), in
the same way quaternions can be used to find one on S3 , and complexes are used to
find one on S1. They also see use in theoretical physics ([G. Dixon (1994)]). Octonions
still are a division algebra, and non-zero octonions O have   N O OO O( )[ ] ( )−1σ  for inverse.
Despite the non-associativity of the multiplication, we still have   N N NO O Oo o o o∗ ′( ) = ( ) ′( ),
since the multiplication i s associative on H.

We can keep doubling ad nauseam, but things really get unwieldy. At the stage
after octonions, the hexadecimalions, X , the algebra is not even alternating. This
author does not know of any use the ulterior echelons may have been put to, if any.

5-  The full Cayley ladder all at once
One might wonder if the whole doubling procedure might be “carried out to

infinity”. As it turns out, it can, after a fashion. We will present here a special
version1 0 of the global object, for simplicity.

Let A  be a commutative ring, whose unit element will be called e .

Let us call   A0 = A and σ 0 the identity over A . It is quite obvious that A, , , ,+ × ×( )σ
is a cayley algebra over A . Using the doubling procedure, we build   A1 = ×A A and σ1,
and by induction we build   An  and σ n for all n ∈N.
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1 0 That is, the object built by our “plain vanilla” version of the Cayley doubling procedure.



Consider A X[ ] the set of polynomials (in one indeterminate X ) with coefficients
in A . We already have an A -algebra structure, which we will denote by A X[ ] + ⋅ ×( ), , ,  and
is the usual commutative algebra. We readily identify   A0 = A with constant polynomials,
thru an homomorphism of A -modules   J 0 . It is trivial to see that   An  identifies with
polynomials of degree less or equal to 2 1n − , thru the trivial A -modules isomorphism

  J n . Let us call     I A An n n x x: , ,→ ( )+1 0a  the canonical identification. Then     ∀ ∈( ) =+n n n nN J I J1 o ,
which means our identifications are all coherent.

So every element of every rung of the Cayley “ladder”, build by successively
doubling the preceding rung and begun by A , a finite number of times, can be identified
uniquely with some polynomial with coefficients in A , and conversely every element
of A X[ ] can be seen a some unique element of the Cayley ladder. As the multiplication
we will define differs, in general, from the polynomial multiplication, we will choose
a new symbol for our construction.

Let   C A( ) be some set equipotent to A X[ ], the set of polynomials in one
indeterminate X  over A , thru a bijection     I C: A A( ) [ ]a X . This bijection induces an
A -module on   C A( ), from A X[ ] + ⋅( ), , , which we will denote by 

  
C A( ) + ⋅( ), , , and we identify

  An  with 
    
I

-1 J An n( )( ).
We will now define a multiplication on   C A( ), which we will denote by “ ∗”. Let

  p C∈ ( )A  and   q C∈ ( )A ; let 
  
P = ( )I p  and 

  
Q = ( )I q , then there exists (at least) one n ∈N such

that   P n n∈ ( )J A  and   Q n n∈ ( )J A . We chose the smallest such n . We now find the only   pn n∈A
such that   P pn n= ( )J  and the only   qn n∈A  such that   Q qn n= ( )J . Finally 

    
I p q∗( ) = ∗( )J An n np q

n
.

We note that for all ′ >n n , we do have   P n n∈ ( )′ ′J A  and   Q n n∈ ( )′ ′J A  and there are unique

  pn n′ ′∈A  such that   P pn n= ( )′ ′J  and   qn n′ ′∈A  such that   Q qn n= ( )′ ′J , but thanks to the coherence

of the identifications we also have 
  
J JA An n n n n np q p q

n n
∗( ) = ∗( )′ ′ ′′

.

It is easy to verify that 
  
C A( ) + ⋅ ∗( ), , ,  is an A -algebra. However, in general

  
I p q I p I q∗( ) ≠ ( ) × ( ) . For instance if A R=  then   X i1 = ( )I , 

  
X j2 = ( )I  and 

  
X k3 = ( )I , and thus

  
I I Ii X X X X j k( ) = ≠ = × = ( ) × ( )1 5 2 3 . So   I is not, in general, an algebra isomorphism between

  
C A( ) + ⋅ ∗( ), , ,  and A X[ ] + ⋅ ×( ), , , , as stated earlier.

We likewise define the conjugation σ , and the cayley trace and “norm”, over

  C A( ) thru the identifications   J n , with values in   A0 . It is now easy to check that

  
C A( ) + ⋅ ∗( ), , , ,σ  is a cayley algebra over A  (usually not commutative or associative),

which, thru the identifications, contains all the rungs of the cayley doubling procedure
starting with A . Elements of A  commute with all elements of   C A( ), for ∗.

We will shortly use the fact that if       I p( ) = + + + = ( )−
−α α α0 1 2 1

2 1X X pn

n

n nL J , then

      
I p p∗( ) = ∗( ) = − + +( )( ) + + +

− −
−J An n np p X X

n
n n

n

α α α α α α α0
2

1
2

2 1

2
1 0 2 1 0

2 12 2L L ; this is simply proved

by recurrence.

As a first example of Cayley ladders, let us consider 
  
C Z

Z2( ) + × ∗( ), , , , Id . It is a
commutative and associative cayley algebra, the conjugation being the identity on

  C
Z

Z2( ) ; however it has zero divisors, as for instance   I I
− −+( ) ∗ +( ) =1 11 1 0X X , but if

15

  p C∈ ( )Z
Z2  and 

  
I p( )has an odd number of 1 then 

  
I p p∗( ) = 1.



The second, perhaps more interesting example, is   C R( ), which we have actually
used already. In that case we can see that if   a C∈ ( )R , then 

    
N

C
aR( )( ) is always positive,

a n d  
    
N

C
aR( )( ) = 0  i f  a n d  o n l y  i f    a = 0;  f u r t h e r m o r e ,

    
a a a a a a a

C C
≠ ⇒ ( )( ) ( )





∗ = ∗ ( )( ) ( )





=( )
−

( )
−

0 1
1 1

N NR Rσ σ . It is also possible in this case to compute

square roots! Indeed, let   x n∈A , with     J n x A A X A Xn

n( ) = + + +
−

−
0 1 2 1

2 1L ; we seek   y n∈A  with

    J n y X Xn

n( ) = + + +
−

−α α α0 1 2 1

2 1L  such that y y x∗ = . This amounts to solving, in R2n
 the

system:

  

α α α
α α

α α

0
2

1
2

2 1

2
0

1 0 1

2 1 0 2 1

2

2

− +( ) =
=

=











−

− −

L

M

n

n n

A

A

A

This system is easily solved by considering first the case x = 0 , for which there is a
unique solution y = 0 , second the subcase x ∈ +R*  for which there are exactly two
solutions given by y x= ± , third the subcase x ∉R  (if n ≥ 1, of course) for which there

are also exactly two solution given by 
    
J n y

A
X

A
X

n n( ) = + + + − −α
α α0

1

0

2 1

0

2 1

2 2
L  wi th

α0

2
2

= ± ( ) +Re x x , and finally the case x ∈ −R* , for which the solutions are all the

  y n∈A  such that   R y( ) = 0  and y x= .

This means that the solutions to y x2 = , where x ∉ −R  are the same in every rung
of the real Cayley ladder (that is, there are exactly two, opposite solutions, belonging
to the same rung), and the solution to y2 0=  is always y = 0 , in whatever rung of the
Cayley ladder. However, solutions to y x2 =  for x ∈ −R*  differ depending upon the precise
rung: in R  there is no solution, in C there are exactly two, opposite, solutions, in H
and above there is an innumerable number of solutions (full spheres)!

Note that in any case a y  such that y x2 =  commutes with x , but that two such
solutions need not commute with each other!

At least two topologies are interesting to consider on   C R( ): the norm topology
induced by the square root of  N , the Cayley “norm” on   C R( ) (we will write   c c= ( )N ) ,
which we will call   T , and the strict inductive limit topology ( [V.-K. Khoan ( 1 9 7 2 )] )
defined by the rungs 

    Cn n n= J A( ) of   C R( ) on which we consider the norms qn
n= ⋅−( )2 0 2sup , ,

which we will call   T∞ .

The problem with ⋅  is that it is not an algebra norm, as evidenced by the
hexadecimalions. Furthermore, 

    C R( )( ),T  is not complete, its completion being   l
2 R( )

with its usual topology.

On the other hand, 
    C R( )( )∞,T  is complete, and the product is (trivially) separately
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continuous ( [N. Bourbaki (EVT)] ), but it is not known if it is continuous.



For both topologies, any finite-dimensional vector space is closed and the
restriction to that vector space is just the usual (euclidian) topology.

At any rate, given   x ∈ ( )C R , the Powers Scholie proves that Vect , ,R 1 x( )( ) is a
commutative R -Banach algebra (of dimension 1 if and only if x ∈R ).

As a final thought, since   C A( ) is an A -Cayley algebra, we can perform the
Cayley doubling procedure on it! And again, and so on and so forth... We can actually
perform an infinity of doubling as above, and embed all these doublings in what,
essentially, is A X Y,[ ]. And then we can start all over again... As we can readily see,
there is no “ultimate” step... What seems to be going on is that we can build an object
for any f i n i t e ordinal ( [J.-M. Exbrayat, P. Mazet ( 1 9 7 1 )]), and we have built an object,
which we have called   C A( ), for the first infinite ordinal ω . We have then seen that the
doubling of   C A( ) yields the object corresponding to ω ∗ (the successor of ω ). The next
infinite ordinal with no predecessor (2ω ) corresponds to A X Y,[ ]. Further on
(corresponding to ω 2 ), we find the set of polynomials in an indeterminate number of

indeterminates (i.e.1 1 A
N N[ ][ ] ). It is not clear, however, in which way we can extend the

construction to any set of ordinals (i.e. there is no clear transfinite “recurrence
formula”).

17

1 1 Recal that if X  is a monoïd ( [N. Bourbaki ( A )] ) and Y  is a set, X Y[ ] is the set of functions from Y  to X
which take values different from the neutral ement of X  only for a finite numbers of elements of Y .



Chapter 3  The Exponential

1 -  What to find here
This chapter is mostly designed to prove the explicit formula for the exponential

in   C R( ), and give several related results. As far as I known, these results are new.

There are many notions of the exponential, and many ways to see several of
them. These, of course, agree when various different definitions can be put forward
for the same object to be exponentiated. We will be concerned here mainly with the
analyst’s point of view, and define the exponential of quaternions thru the use of the
usual power series ( [A.F. Beardon ( 1 9 7 9 )],...). It is known that the approach detailed in
[F. Pham ( 1 9 9 6 )] could also be used, at least for quaternions, though I believe it would
then be necessary to derive the power series representation (or the intermediary
differential representation we will also use) to achieve our present goal. It remains
to be seen if it can also be carried over to the whole of   C R( ).

2-  Definition
Given   x ∈ ( )C R , we will call exponential of x , and we will write Exp x( ) the

element of   C R( ) given by 
x

n

n

n !=

+∞

∑
0

. The unambiguity and existence of Exp x( ) is given by the

fact that Vect , ,R 1 x( )( ) is a commutative R -Banach algebra, as we have said earlier.
This, of course agrees with the definition on R  and C. We must bear in mind that
Exp Vect ,x x( ) ∈ ( )R 1 .

We see at once that 
  
∀ ∈ ( )( ) ( ) = ( )x x xC R Exp Exp . The exponential is continuous when

restricted to each rung of   C R( ), and has its values into the same rung (we will give a
more precise result later on).

3-  Links with differentiation
Differentiating a function of one or several quaternions (or higher in the Cayley

ladder) is quite problematic. Of course, since Vect ,R 1 x( ) is commutative, there is no
ambiguity in defining f f /y x y x( ) − ( )( ) −( )  i f y x∈ ( )Vect ,R 1 , and we can therefore differentiate
Exp

Vect ,R 1 x( )  with respect to some y x∈ ( )Vect ,R 1  and find that it is once again Exp
Vect ,R 1 x( ) .

It is more fruitful, however, to differentiate a function of a rea l variable, with
values in some topological R -vector space.

Let us therefore consider, for some   x ∈ ( )C R , the function     e t txx : , ExpR R→ ( ) ( )[ ]C a .

It is clear that ex  takes its values in Vect ,R 1 x( ), is differentiable and e t x e t e t xx x x
′ ( ) = ( ) = ( ) ,

and of course ex 0 1( ) = . This, of course proves that ex  is the unique solution to ′ =f x f ,
f 0 1( ) =  in         C

1 1R R,Vect , x( )( ), the set of one-time continuously differentiable functions
from R  to Vect ,R 1 x( ). Given any rung   E  of   C R( ) such that   x ∈E , ex  is still the unique
solution to ′ =f x f , f 0 1( ) =  in           C

1 R,E( ) .

The perhaps surprising phenomenon is when we consider the equation ′ =f x f ,
f 0( ) = γ  in           C

1 R,E( )  for some rung   E  of   C R( ) such that   x ∈E , and   γ ∈E . If   E = R  or   E = C,
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then of course the solution is e tx ( ) γ , and it turns out this is still true if   E = H ,



because of the associativity of the quaternionic product (this, actually, is how one
can navigate the unit sphere of the quaternions, which is useful for interpolating
between orientations, and was the problem under examination in [D. Pletincks (1989)]). It
is interesting to note that this is s t i l l true if   E = O because of the alternative nature
of that algebra. This stops to be true with hexadecimalions, however. Indeed, consider

x i e= + ′′′ and γ = j , and let g t e tx( ) = ( ) γ . We will shortly see that e i ei e+ ′′′







= + ′′′( )π 2
4

2
2

,

from which we can deduce g
π 2

4
2

2







= + ′′′( )i e j  and ′






= + ′′′( ) + ′′′( )





= −g
π 2

4
2

2
2i e i e j j

whereas i e i e i e j j k+ ′′′( ) 



 = + ′′′( ) + ′′′( )





= − + ′′′( )g
π
2

2
2

2 , and therefore ′

 ≠ + ′′′( ) 



g g

π π
2 2

i e .

Numerical integration procedures will yield the solution to the differential equation,
and therefore not the exponential function, unless care has been taken to chose the
starting point correctly.

4-  The closed formula for the exponential in   C R( )
We now give the main result of this work. Note that it is closed only in that we

assume the exponential and classical trigonometric functions on R  to be givens1 2.

Theorem (Exponential): # If   x ∈ ( )C R  then Exp e cos Ur sinc Ur UrRex x x xx( ) = ( )( ) + ( )( ) ( )[ ]( )
π . $

# Let   y ∈ ( )C R  such that Re y( ) = 0, y = 1; then   y y y y y2 1= ( ) −[ ] = − ( ) = −T N . Therefore, in
Vect ,R 1 y( )  computations are carried out exactly as in C, with y  taking the place of i .
More precisely,   C , +R→ ( ) +[ ]Vect ,1 y a ib a bya  is a Banach isomorphism.

Let now   x ∈ ( )C R . If x ∈R , we see the result is trivially true. Assume, then that x ∉R ,

and let ˆ
Ur
Ur

x
x

x
= ( )

( )
. Then Re x̂( ) = 0 ,  x̂ = 1,  x x x x= ( ) + ( )Re Ur ˆ , and of course

Vect , Vect , ˆR R1 1x x( ) = ( ).  The previous identi f icat ion then al lows us to f ind

Exp e cos Ur sin Ur ˆRex x x xx( ) = ( )( ) + ( )( )[ ]( ) . $

As an example, we have, as announced earlier, Exp
π 2

4
2

2
i e i e+ ′′′( )





= + ′′′( ) .
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1 2 A family of special functions will be of interest here, that of the “Sinus Cardinal” functions, defined for

some parameter a ∈R+
*  by 

  

sinc : ,
sin

a x

x

a
x

a

R R→

























a

π

. We will, by similitude, define the

“Hyperbolic Sinus Cardinal” family of functions defined for some parameter a ∈R+
*  by

  

sinhc : ,
sinh

a x

x

a
x

a

R R→

























a

π

. These functions are entire functions on all of R .



5-  Some properties of the exponential and further consequences
We compute at once Exp e Re xx( ) = ( ) .

As should be expected when we lose the benefit of commutativity, the exponential
of a sum is in general different from the product of the exponentials; for instance we
h a v e  Exp Exp cos cos sin cos sin cos sin sini j i j k( ) ( ) = ( ) ( ) + ( ) ( ) + ( ) ( ) + ( ) ( )1 1 1 1 1 1 1 1  w h e r e a s

Exp cosi j i j+( ) = ( ) + +( )2
2

2
. We also see immediately that the exponential is not injective

on any rung   E  of   C R( ) containing C, as it is already not injective on C! We, however
also lose the periodicity when   E  contains H, as the periods would make an additive
subgroup of   E  but the solutions of Exp x( ) = 1 on H are exactly the set 2 0 2π . .N S{ } ×  (with
S2  the unit sphere of R3); the rest is number theory (and trying to fit square pegs into
round holes). We have more details on the surjectivity of the exponential:

Corollary (sujectivity): # If   E  is a rung of   C R( ) containing C, then the exponential is a
surjection from   E  onto   E − { }0 . $

# We first note that given any   x ∈ ( )C R , Exp e Re xx( ) = ( )  proves that the exponential never
take the value 0  on   C R( ).
Let now   y ∈E , y ≠ 0 . If y ∈R we know we can solve our problem (in R  if y > 0, in C if

y < 0). Assume therefore that y ∉R. We can find ρ ∈R  such that eρ = y . Let ỹ
y

y
= ;

ỹ = 1 and ỹ ∉R , so let ˆ
Ur ˜

Ur ˜
y

y

y
= ( )

( ) , so that ˜ Re ˜ Ur ˜ ˆy y y y= ( ) + ( ) , Re ỹ( ) ≠ 0 and Re ˜ Ur ˜y y( ) + ( ) =2 2
1.

Let θ π∈] [0;  the unique number such that cos Re ˜θ( ) = ( )y  and sin Ur ˜θ( ) = ( )y . We see that
Exp ˆρ θ+( ) =y y . $

We can likewise find closed formulæ for other interesting entire functions

(defining cos
!

x
x

n

n n

n

( ) = −( )
( )=

+∞

∑ 1
2

2

0

, sin
!

x
x

n

n n

n

( ) = −( )
+( )

+

=

+∞

∑ 1
2 1

2 1

0

, cosh
!

x
x

n

n

n

( ) =
( )=

+∞

∑
2

0 2
, sinh

!
x

x

n

n

n

( ) =
+( )

+

=

+∞

∑
2 1

0 2 1
), to wit:

cos cos Re cosh Ur sin Re sinhc Ur x Ur xx x x x( ) = ( )( ) ( )( ) − ( )( ) ( )( ) ( )π

sin sin Re cosh Ur x cos Re sinhc Ur x Ur xx x x( ) = ( )( ) ( )( ) + ( )( ) ( )( ) ( )π

cosh cosh Re cos Ur sinh Re sinc Urx x x x x( ) = ( )( ) ( )( ) + ( )( ) ( ) ( )π

sinh sinh Re cos Ur cosh Re sinc Ur Urx x x x x x( ) = ( )( ) ( )( ) + ( )( ) ( )( ) ( )π

and of course many other such.

6-  Conclusion
We have found a closed formula for the exponential, for quaternions, octonions,

and beyond.

An interesting application of this formula is navigation on the unit sphere of
the quaternions, leading to an algorithm for the interpolation of orientations, but
which, in general, does not preserve the horizontal. This can also be achieved, however,
and has been implemented by the author and a colleague ([Horizontal-preserving quaternions]).
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Software index
Horizontal-preserving quaternions: available for licencing from the author, © Hubert Holin & Didier Vidal.
Maple : A commercial computer-aided mathematics software, currently in version V, release

5.1; edited by Waterloo Maple Inc., 450Phillip St., Waterloo, ON N2L SJ2, Canada;
http://www.maplesoft.com.

Interesting URLs
G. Dixon: http://www.7stones.com/Homepage/sevenhome2.html.
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E. Weisstein: http://www.treasure-troves.com/math/CayleyNumber.html.


