Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

Click here to view the latest version of this page.
PrevUpHomeNext

Class template flat_set

boost::container::flat_set

Synopsis

// In header: <boost/container/flat_set.hpp>

template<typename T, typename Pred = std::less<T>, 
         typename A = std::allocator<T> > 
class flat_set {
public:
  // types
  typedef tree_t::key_type               key_type;              
  typedef tree_t::value_type             value_type;            
  typedef tree_t::pointer                pointer;               
  typedef tree_t::const_pointer          const_pointer;         
  typedef tree_t::reference              reference;             
  typedef tree_t::const_reference        const_reference;       
  typedef tree_t::key_compare            key_compare;           
  typedef tree_t::value_compare          value_compare;         
  typedef tree_t::iterator               iterator;              
  typedef tree_t::const_iterator         const_iterator;        
  typedef tree_t::reverse_iterator       reverse_iterator;      
  typedef tree_t::const_reverse_iterator const_reverse_iterator;
  typedef tree_t::size_type              size_type;             
  typedef tree_t::difference_type        difference_type;       
  typedef tree_t::allocator_type         allocator_type;        
  typedef tree_t::stored_allocator_type  stored_allocator_type; 

  // construct/copy/destruct
  explicit flat_set();
  explicit flat_set(const Pred &, const allocator_type & = allocator_type());
  template<typename InputIterator> 
    flat_set(InputIterator, InputIterator, const Pred & = Pred(), 
             const allocator_type & = allocator_type());
  template<typename InputIterator> 
    flat_set(ordered_unique_range_t, InputIterator, InputIterator, 
             const Pred & = Pred(), 
             const allocator_type & = allocator_type());
  flat_set(const flat_set &);
  flat_set(BOOST_RV_REF(flat_set));
  flat_set(const flat_set &, const allocator_type &);
  flat_set(BOOST_RV_REF(flat_set), const allocator_type &);
  flat_set& operator=(BOOST_COPY_ASSIGN_REF(flat_set));
  flat_set& operator=(BOOST_RV_REF(flat_set));

  // public member functions
  key_compare key_comp() const;
  value_compare value_comp() const;
  allocator_type get_allocator() const;
  const stored_allocator_type & get_stored_allocator() const;
  stored_allocator_type & get_stored_allocator();
  iterator begin();
  const_iterator begin() const;
  const_iterator cbegin() const;
  iterator end();
  const_iterator end() const;
  const_iterator cend() const;
  reverse_iterator rbegin();
  const_reverse_iterator rbegin() const;
  const_reverse_iterator crbegin() const;
  reverse_iterator rend();
  const_reverse_iterator rend() const;
  const_reverse_iterator crend() const;
  bool empty() const;
  size_type size() const;
  size_type max_size() const;
  void swap(flat_set &);
  std::pair< iterator, bool > insert(insert_const_ref_type);
  std::pair< iterator, bool > insert(T &);
  template<typename U> 
    std::pair< iterator, bool > insert(const U &, unspecified = 0);
  std::pair< iterator, bool > insert(BOOST_RV_REF(value_type));
  iterator insert(const_iterator, insert_const_ref_type);
  iterator insert(const_iterator, T &);
  template<typename U> 
    iterator insert(const_iterator, const U &, unspecified = 0);
  iterator insert(const_iterator, BOOST_RV_REF(value_type));
  template<typename InputIterator> void insert(InputIterator, InputIterator);
  template<typename InputIterator> 
    void insert(ordered_unique_range_t, InputIterator, InputIterator);
  template<class... Args> std::pair< iterator, bool > emplace(Args &&...);
  template<class... Args> iterator emplace_hint(const_iterator, Args &&...);
  iterator erase(const_iterator);
  size_type erase(const key_type &);
  iterator erase(const_iterator, const_iterator);
  void clear();
  void shrink_to_fit();
  iterator find(const key_type &);
  const_iterator find(const key_type &) const;
  size_type count(const key_type &) const;
  iterator lower_bound(const key_type &);
  const_iterator lower_bound(const key_type &) const;
  iterator upper_bound(const key_type &);
  const_iterator upper_bound(const key_type &) const;
  std::pair< const_iterator, const_iterator > 
  equal_range(const key_type &) const;
  std::pair< iterator, iterator > equal_range(const key_type &);
  size_type capacity() const;
  void reserve(size_type);
};

Description

flat_set is a Sorted Associative Container that stores objects of type Key. flat_set is a Simple Associative Container, meaning that its value type, as well as its key type, is Key. It is also a Unique Associative Container, meaning that no two elements are the same.

flat_set is similar to std::set but it's implemented like an ordered vector. This means that inserting a new element into a flat_set invalidates previous iterators and references

Erasing an element of a flat_set invalidates iterators and references pointing to elements that come after (their keys are bigger) the erased element.

flat_set public construct/copy/destruct

  1. explicit flat_set();

    Effects: Default constructs an empty flat_set.

    Complexity: Constant.

  2. explicit flat_set(const Pred & comp, 
                      const allocator_type & a = allocator_type());

    Effects: Constructs an empty flat_set using the specified comparison object and allocator.

    Complexity: Constant.

  3. template<typename InputIterator> 
      flat_set(InputIterator first, InputIterator last, 
               const Pred & comp = Pred(), 
               const allocator_type & a = allocator_type());

    Effects: Constructs an empty set using the specified comparison object and allocator, and inserts elements from the range [first ,last ).

    Complexity: Linear in N if the range [first ,last ) is already sorted using comp and otherwise N logN, where N is last - first.

  4. template<typename InputIterator> 
      flat_set(ordered_unique_range_t, InputIterator first, InputIterator last, 
               const Pred & comp = Pred(), 
               const allocator_type & a = allocator_type());

    Effects: Constructs an empty flat_set using the specified comparison object and allocator, and inserts elements from the ordered unique range [first ,last). This function is more efficient than the normal range creation for ordered ranges.

    Requires: [first ,last) must be ordered according to the predicate and must be unique values.

    Complexity: Linear in N.

    Note: Non-standard extension.

  5. flat_set(const flat_set & x);

    Effects: Copy constructs a set.

    Complexity: Linear in x.size().

  6. flat_set(BOOST_RV_REF(flat_set) mx);

    Effects: Move constructs a set. Constructs *this using x's resources.

    Complexity: Constant.

    Postcondition: x is emptied.

  7. flat_set(const flat_set & x, const allocator_type & a);

    Effects: Copy constructs a set using the specified allocator.

    Complexity: Linear in x.size().

  8. flat_set(BOOST_RV_REF(flat_set) mx, const allocator_type & a);

    Effects: Move constructs a set using the specified allocator. Constructs *this using x's resources.

    Complexity: Constant if a == mx.get_allocator(), linear otherwise

  9. flat_set& operator=(BOOST_COPY_ASSIGN_REF(flat_set) x);

    Effects: Makes *this a copy of x.

    Complexity: Linear in x.size().

  10. flat_set& operator=(BOOST_RV_REF(flat_set) mx);

    Effects: Makes *this a copy of the previous value of xx.

    Complexity: Linear in x.size().

flat_set public member functions

  1. key_compare key_comp() const;

    Effects: Returns the comparison object out of which a was constructed.

    Complexity: Constant.

  2. value_compare value_comp() const;

    Effects: Returns an object of value_compare constructed out of the comparison object.

    Complexity: Constant.

  3. allocator_type get_allocator() const;

    Effects: Returns a copy of the Allocator that was passed to the object's constructor.

    Complexity: Constant.

  4. const stored_allocator_type & get_stored_allocator() const;
  5. stored_allocator_type & get_stored_allocator();
  6. iterator begin();

    Effects: Returns an iterator to the first element contained in the container.

    Throws: Nothing.

    Complexity: Constant.

  7. const_iterator begin() const;

    Effects: Returns a const_iterator to the first element contained in the container.

    Throws: Nothing.

    Complexity: Constant.

  8. const_iterator cbegin() const;

    Effects: Returns a const_iterator to the first element contained in the container.

    Throws: Nothing.

    Complexity: Constant.

  9. iterator end();

    Effects: Returns an iterator to the end of the container.

    Throws: Nothing.

    Complexity: Constant.

  10. const_iterator end() const;

    Effects: Returns a const_iterator to the end of the container.

    Throws: Nothing.

    Complexity: Constant.

  11. const_iterator cend() const;

    Effects: Returns a const_iterator to the end of the container.

    Throws: Nothing.

    Complexity: Constant.

  12. reverse_iterator rbegin();

    Effects: Returns a reverse_iterator pointing to the beginning of the reversed container.

    Throws: Nothing.

    Complexity: Constant.

  13. const_reverse_iterator rbegin() const;

    Effects: Returns a const_reverse_iterator pointing to the beginning of the reversed container.

    Throws: Nothing.

    Complexity: Constant.

  14. const_reverse_iterator crbegin() const;

    Effects: Returns a const_reverse_iterator pointing to the beginning of the reversed container.

    Throws: Nothing.

    Complexity: Constant.

  15. reverse_iterator rend();

    Effects: Returns a reverse_iterator pointing to the end of the reversed container.

    Throws: Nothing.

    Complexity: Constant.

  16. const_reverse_iterator rend() const;

    Effects: Returns a const_reverse_iterator pointing to the end of the reversed container.

    Throws: Nothing.

    Complexity: Constant.

  17. const_reverse_iterator crend() const;

    Effects: Returns a const_reverse_iterator pointing to the end of the reversed container.

    Throws: Nothing.

    Complexity: Constant.

  18. bool empty() const;

    Effects: Returns true if the container contains no elements.

    Throws: Nothing.

    Complexity: Constant.

  19. size_type size() const;

    Effects: Returns the number of the elements contained in the container.

    Throws: Nothing.

    Complexity: Constant.

  20. size_type max_size() const;

    Effects: Returns the largest possible size of the container.

    Throws: Nothing.

    Complexity: Constant.

  21. void swap(flat_set & x);

    Effects: Swaps the contents of *this and x.

    Throws: Nothing.

    Complexity: Constant.

  22. std::pair< iterator, bool > insert(insert_const_ref_type x);

    Effects: Inserts x if and only if there is no element in the container with key equivalent to the key of x.

    Returns: The bool component of the returned pair is true if and only if the insertion takes place, and the iterator component of the pair points to the element with key equivalent to the key of x.

    Complexity: Logarithmic search time plus linear insertion to the elements with bigger keys than x.

    Note: If an element is inserted it might invalidate elements.

  23. std::pair< iterator, bool > insert(T & x);
  24. template<typename U> 
      std::pair< iterator, bool > insert(const U & u, unspecified = 0);
  25. std::pair< iterator, bool > insert(BOOST_RV_REF(value_type) x);

    Effects: Inserts a new value_type move constructed from the pair if and only if there is no element in the container with key equivalent to the key of x.

    Returns: The bool component of the returned pair is true if and only if the insertion takes place, and the iterator component of the pair points to the element with key equivalent to the key of x.

    Complexity: Logarithmic search time plus linear insertion to the elements with bigger keys than x.

    Note: If an element is inserted it might invalidate elements.

  26. iterator insert(const_iterator p, insert_const_ref_type x);

    Effects: Inserts a copy of x in the container if and only if there is no element in the container with key equivalent to the key of x. p is a hint pointing to where the insert should start to search.

    Returns: An iterator pointing to the element with key equivalent to the key of x.

    Complexity: Logarithmic search time (constant if x is inserted right before p) plus insertion linear to the elements with bigger keys than x.

    Note: If an element is inserted it might invalidate elements.

  27. iterator insert(const_iterator position, T & x);
  28. template<typename U> 
      iterator insert(const_iterator position, const U & u, unspecified = 0);
  29. iterator insert(const_iterator position, BOOST_RV_REF(value_type) x);

    Effects: Inserts an element move constructed from x in the container. p is a hint pointing to where the insert should start to search.

    Returns: An iterator pointing to the element with key equivalent to the key of x.

    Complexity: Logarithmic search time (constant if x is inserted right before p) plus insertion linear to the elements with bigger keys than x.

    Note: If an element is inserted it might invalidate elements.

  30. template<typename InputIterator> 
      void insert(InputIterator first, InputIterator last);

    Requires: first, last are not iterators into *this.

    Effects: inserts each element from the range [first,last) if and only if there is no element with key equivalent to the key of that element.

    Complexity: At most N log(size()+N) (N is the distance from first to last) search time plus N*size() insertion time.

    Note: If an element is inserted it might invalidate elements.

  31. template<typename InputIterator> 
      void insert(ordered_unique_range_t, InputIterator first, InputIterator last);

    Requires: first, last are not iterators into *this and must be ordered according to the predicate and must be unique values.

    Effects: inserts each element from the range [first,last) .This function is more efficient than the normal range creation for ordered ranges.

    Complexity: At most N log(size()+N) (N is the distance from first to last) search time plus N*size() insertion time.

    Note: Non-standard extension. If an element is inserted it might invalidate elements.

  32. template<class... Args> std::pair< iterator, bool > emplace(Args &&... args);

    Effects: Inserts an object x of type T constructed with std::forward<Args>(args)... if and only if there is no element in the container with key equivalent to the key of x.

    Returns: The bool component of the returned pair is true if and only if the insertion takes place, and the iterator component of the pair points to the element with key equivalent to the key of x.

    Complexity: Logarithmic search time plus linear insertion to the elements with bigger keys than x.

    Note: If an element is inserted it might invalidate elements.

  33. template<class... Args> 
      iterator emplace_hint(const_iterator hint, Args &&... args);

    Effects: Inserts an object of type T constructed with std::forward<Args>(args)... in the container if and only if there is no element in the container with key equivalent to the key of x. p is a hint pointing to where the insert should start to search.

    Returns: An iterator pointing to the element with key equivalent to the key of x.

    Complexity: Logarithmic search time (constant if x is inserted right before p) plus insertion linear to the elements with bigger keys than x.

    Note: If an element is inserted it might invalidate elements.

  34. iterator erase(const_iterator position);

    Effects: Erases the element pointed to by position.

    Returns: Returns an iterator pointing to the element immediately following q prior to the element being erased. If no such element exists, returns end().

    Complexity: Linear to the elements with keys bigger than position

    Note: Invalidates elements with keys not less than the erased element.

  35. size_type erase(const key_type & x);

    Effects: Erases all elements in the container with key equivalent to x.

    Returns: Returns the number of erased elements.

    Complexity: Logarithmic search time plus erasure time linear to the elements with bigger keys.

  36. iterator erase(const_iterator first, const_iterator last);

    Effects: Erases all the elements in the range [first, last).

    Returns: Returns last.

    Complexity: size()*N where N is the distance from first to last.

    Complexity: Logarithmic search time plus erasure time linear to the elements with bigger keys.

  37. void clear();

    Effects: erase(a.begin(),a.end()).

    Postcondition: size() == 0.

    Complexity: linear in size().

  38. void shrink_to_fit();
    Effects: Tries to deallocate the excess of memory created

    Throws: If memory allocation throws, or T's copy constructor throws.

    Complexity: Linear to size().

  39. iterator find(const key_type & x);

    Returns: An iterator pointing to an element with the key equivalent to x, or end() if such an element is not found.

    Complexity: Logarithmic.

  40. const_iterator find(const key_type & x) const;

    Returns: A const_iterator pointing to an element with the key equivalent to x, or end() if such an element is not found.

    Complexity: Logarithmic.s

  41. size_type count(const key_type & x) const;

    Returns: The number of elements with key equivalent to x.

    Complexity: log(size())+count(k)

  42. iterator lower_bound(const key_type & x);

    Returns: An iterator pointing to the first element with key not less than k, or a.end() if such an element is not found.

    Complexity: Logarithmic

  43. const_iterator lower_bound(const key_type & x) const;

    Returns: A const iterator pointing to the first element with key not less than k, or a.end() if such an element is not found.

    Complexity: Logarithmic

  44. iterator upper_bound(const key_type & x);

    Returns: An iterator pointing to the first element with key not less than x, or end() if such an element is not found.

    Complexity: Logarithmic

  45. const_iterator upper_bound(const key_type & x) const;

    Returns: A const iterator pointing to the first element with key not less than x, or end() if such an element is not found.

    Complexity: Logarithmic

  46. std::pair< const_iterator, const_iterator > 
    equal_range(const key_type & x) const;

    Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).

    Complexity: Logarithmic

  47. std::pair< iterator, iterator > equal_range(const key_type & x);

    Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).

    Complexity: Logarithmic

  48. size_type capacity() const;

    Effects: Number of elements for which memory has been allocated. capacity() is always greater than or equal to size().

    Throws: Nothing.

    Complexity: Constant.

  49. void reserve(size_type count);

    Effects: If n is less than or equal to capacity(), this call has no effect. Otherwise, it is a request for allocation of additional memory. If the request is successful, then capacity() is greater than or equal to n; otherwise, capacity() is unchanged. In either case, size() is unchanged.

    Throws: If memory allocation allocation throws or T's copy constructor throws.

    Note: If capacity() is less than "count", iterators and references to to values might be invalidated.


PrevUpHomeNext