Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

Click here to view the latest version of this page.
PrevUpHomeNext

Operator Type Traits

Introduction

These traits are all value traits inheriting from integral_constant and providing a simple true or false boolean value which reflects the fact that given types can or cannot be used with given operators.

For example, has_plus<int, double>::value is a bool which value is true because it is possible to add a double to an int like in the following code:

int i;
double d;
i+d;

It is also possible to know if the result of the operator can be used as function argument of a given type. For example, has_plus<int, double, float>::value is true because it is possible to add a double to an int and the result (double) can be converted to a float argument like in the following code:

void f(float) { };
int i;
double d;
f(i+d);

Example of application

These traits can be useful to optimize the code for types supporting given operations. For example a function std::advance that increases an iterator of a given number of steps could be implemented as follows:

#include <boost/type_traits/has_plus_assign.hpp>

namespace detail {
template < class Iterator, class Distance, bool has_plus_assign >
struct advance_impl;

// this is used if += exists (efficient)
template < class Iterator, class Distance >
struct advance_impl<Iterator, Distance, true> {
   void operator()(Iterator &i, Distance n) {
      i+=n;
   }
};

// this is use if += does not exists (less efficient but cannot do better)
template < class Iterator, class Distance >
struct advance_impl<Iterator, Distance, false> {
   void operator()(Iterator &i, Distance n) {
      if (n>0) {
         while (n--) ++i;
      } else {
         while (n++) --i;
      }
   }
};
} // namespace detail

template < class Iterator, class Distance >
inline void advance(Iterator &i, Distance n) {
   detail::advance_impl< Iterator, Distance, ::boost::has_plus_assign<Iterator>::value >()(i, n);
}

Then the compiler chooses the most efficient implementation according to the type's ability to perform += operation:

#include <iostream>

class with {
      int m_i;
   public:
      with(int i=0) : m_i(i) { }
      with &operator+=(int rhs) { m_i+=rhs; return *this; }
      operator int const () { return m_i; }
};

class without {
      int m_i;
   public:
      without(int i=0) : m_i(i) { }
      without &operator++() { ++m_i; return *this; }
      without &operator--() { --m_i; return *this; }
      operator int const () { return m_i; }
};

int main() {
   with i=0;
   advance(i, 10); // uses +=
   std::cout<<"with: "<<i<<'\n';
   without j=0;
   advance(j, 10); // uses ++
   std::cout<<"without: "<<j<<'\n';
   return 0;
}

Description

The syntax is the following:

template < class Rhs, class Ret=dont_care > has_op; // prefix operator
template < class Lhs, class Ret=dont_care > has_op; // postfix operator
template < class Lhs, class Rhs=Lhs, class Ret=dont_care > has_op; // binary operator

where:

The default behaviour (Ret=dont_care) is to not check for the return value of the operator. If Ret is different from the default dont_care, the return value is checked to be convertible to Ret. Convertible to Ret means that the return value can be used as argument to a function expecting Ret:

void f(Ret);
Lhs lhs;
Rhs rhs;
f(lhs+rhs); // is valid if has_plus<Lhs, Rhs, Ret>::value==true

If Ret=void, the return type is checked to be exactly void.

The following tables give the list of supported binary, prefix and postfix operators.

Table 1.4. Supported prefix operators

prefix operator

trait name

!

has_logical_not < class Rhs, class Ret=dont_care >

+

has_unary_plus

-

has_unary_minus and has_negate

~

has_complement

*

has_dereference

++

has_pre_increment

--

has_pre_decrement


Table 1.5. Supported postfix operators

postfix operator

trait name

++

has_post_increment < class Lhs, class Ret=dont_care >

--

has_post_decrement


Table 1.6. Supported binary operators


The following operators are not supported because they could not be implemented using the same technique: operator=, operator->, operator&, operator[], operator,, operator(), operator new.

cv qualifiers and references

A reference sign & in the operator argument is ignored so that has_plus< int&, double& >::value==has_plus< int, double >::value. This has been chosen because if the following code works (does not work):

int i;
double d;
i+d;

the following code also works (does not work):

int &ir=i;
double &dr=d;
ir+dr;

It was not possible to handle properly the volatile qualifier so that any construct using this qualifier has undefined behavior.

As a help, the following tables give the necessary conditions over each trait template argument for the trait value to be true. They are non sufficient conditions because the conditions must be true for all arguments and return type for value to be true.

Table 1.7. necessary and non sufficient condition on operator argument for value to be true

operator declaration

has_op< void >

has_op< Arg > and has_op< Arg& >

has_op< Arg const > and has_op< Arg const& >

operator@(Arg)

false

true

true

operator@(Arg const)

false

true

true

operator@(Arg &)

false

true

false

operator@(Arg const &)

false

true

true


Table 1.8. necessary and non sufficient condition on operator return type for value to be true

operator declaration

has_op< ..., void >

has_op< ..., Ret >

has_op< ..., Ret const >

has_op< ..., Ret & >

has_op< ..., Ret const & >

void operator@(...)

true

false

false

false

false

Ret operator@(...)

false

true

true

false

true

Ret const operator@(...)

false

true

true

false

true

Ret & operator@(...)

false

true

true

true

true

Ret const & operator@(...)

false

true

true

false

true


Implementation

The implementation consists in only header files. The following headers should included first:

#include <boost/type_traits/has_operator.hpp>

or

#include <boost/type_traits/has_op.hpp>

where op is the textual name chosen for the wanted operator. The first method includes all operator traits.

All traits are implemented the same way using preprocessor macros to avoid code duplication. The main files are in boost/type_traits/detail: has_binary_operator.hpp, has_prefix_operator.hpp and has_postfix_operator.hpp. The example of prefix operator- is presented below:

namespace boost {
namespace detail {

// This namespace ensures that argument-dependent name lookup does not mess things up.
namespace has_unary_minus_impl {

// 1. a function to have an instance of type T without requiring T to be default
// constructible
template <typename T> T &make();


// 2. we provide our operator definition for types that do not have one already

// a type returned from operator- when no such operator is
// found in the type's own namespace (our own operator is used) so that we have
// a means to know that our operator was used
struct no_operator { };

// this class allows implicit conversions and makes the following operator
// definition less-preferred than any other such operators that might be found
// via argument-dependent name lookup
struct any { template <class T> any(T const&); };

// when operator- is not available, this one is used
no_operator operator-(const any&);


// 3. checks if the operator returns void or not
// conditions: Rhs!=void

// we first redefine "operator," so that we have no compilation error if
// operator- returns void and we can use the return type of
// (-rhs, returns_void_t()) to deduce if operator- returns void or not:
// - operator- returns void   -> (-rhs, returns_void_t()) returns returns_void_t
// - operator- returns !=void -> (-rhs, returns_void_t()) returns int
struct returns_void_t { };
template <typename T> int operator,(const T&, returns_void_t);
template <typename T> int operator,(const volatile T&, returns_void_t);

// this intermediate trait has member value of type bool:
// - value==true  -> operator- returns void
// - value==false -> operator- does not return void
template < typename Rhs >
struct operator_returns_void {
   // overloads of function returns_void make the difference
   // yes_type and no_type have different size by construction
   static ::boost::type_traits::yes_type returns_void(returns_void_t);
   static ::boost::type_traits::no_type returns_void(int);
   static const bool value = sizeof(::boost::type_traits::yes_type)==sizeof(returns_void((-make<Rhs>(),returns_void_t())));
};


// 4. checks if the return type is Ret or Ret==dont_care
// conditions: Rhs!=void

struct dont_care { };

template < typename Rhs, typename Ret, bool Returns_void >
struct operator_returns_Ret;

template < typename Rhs >
struct operator_returns_Ret < Rhs, dont_care, true > {
   static const bool value = true;
};

template < typename Rhs >
struct operator_returns_Ret < Rhs, dont_care, false > {
   static const bool value = true;
};

template < typename Rhs >
struct operator_returns_Ret < Rhs, void, true > {
   static const bool bool value = true;
};

template < typename Rhs >
struct operator_returns_Ret < Rhs, void, false > {
   static const bool value = false;
};

template < typename Rhs, typename Ret >
struct operator_returns_Ret < Rhs, Ret, true > {
   static const bool value = false;
};

// otherwise checks if it is convertible to Ret using the sizeof trick
// based on overload resolution
// condition: Ret!=void and Ret!=dont_care and the operator does not return void
template < typename Rhs, typename Ret >
struct operator_returns_Ret < Rhs, Ret, false > {
   static ::boost::type_traits::yes_type is_convertible_to_Ret(Ret); // this version is preferred for types convertible to Ret
   static ::boost::type_traits::no_type is_convertible_to_Ret(...); // this version is used otherwise

   static const bool value = sizeof(is_convertible_to_Ret(-make<Rhs>()))==sizeof(::boost::type_traits::yes_type);
};


// 5. checks for operator existence
// condition: Rhs!=void

// checks if our definition of operator- is used or an other
// existing one;
// this is done with redefinition of "operator," that returns no_operator or has_operator
struct has_operator { };
no_operator operator,(no_operator, has_operator);

template < typename Rhs >
struct operator_exists {
   static ::boost::type_traits::yes_type check(has_operator); // this version is preferred when operator exists
   static ::boost::type_traits::no_type check(no_operator); // this version is used otherwise

   static const bool value = sizeof(check(((-make<Rhs>()),make<has_operator>())))==sizeof(::boost::type_traits::yes_type);
};


// 6. main trait: to avoid any compilation error, this class behaves
// differently when operator-(Rhs) is forbidden by the standard.
// Forbidden_if is a bool that is:
// - true when the operator-(Rhs) is forbidden by the standard
//   (would yield compilation error if used)
// - false otherwise
template < typename Rhs, typename Ret, bool Forbidden_if >
struct trait_impl1;

template < typename Rhs, typename Ret >
struct trait_impl1 < Rhs, Ret, true > {
   static const bool value = false;
};

template < typename Rhs, typename Ret >
struct trait_impl1 < Rhs, Ret, false > {
   static const bool value =
      ::boost::type_traits::ice_and<
         operator_exists < Rhs >::value,
         operator_returns_Ret < Rhs, Ret, operator_returns_void < Rhs >::value >::value
      >::value
   ;
};

// specialization needs to be declared for the special void case
template < typename Ret >
struct trait_impl1 < void, Ret, false > {
   static const bool value = false;
};

// defines some typedef for convenience
template < typename Rhs, typename Ret >
struct trait_impl {
   typedef typename ::boost::remove_reference<Rhs>::type Rhs_noref;
   typedef typename ::boost::remove_cv<Rhs_noref>::type Rhs_nocv;
   typedef typename ::boost::remove_cv< typename ::boost::remove_reference< typename ::boost::remove_pointer<Rhs_noref>::type >::type >::type Rhs_noptr;
   static const bool value = trait_impl1 < Rhs_noref, Ret, ::boost::is_pointer< Rhs_noref >::value >::value;
};

} // namespace impl
} // namespace detail

// this is the accessible definition of the trait to end user
template < typename Rhs, typename Ret=::boost::detail::has_unary_minus_impl::dont_care >
struct has_unary_minus : ::boost::integral_constant<bool,(::boost::detail::has_unary_minus_impl::trait_impl < Rhs, Ret >::value)> { };

} // namespace boost

Limitation
Known issues
Acknowledgments

Frederic Bron is very thankful to numerous people from the boost mailing list for their kind help and patience. In particular, the following persons have been very helpful for the implementation: Edward Diener, Eric Niebler, Jeffrey Lee Hellrung (Jr.), Robert Stewart, Roman Perepelitsa, Steven Watanabe, Vicente Botet.


PrevUpHomeNext