Boost C++ Libraries of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards



Queries returns Values which meets some predicates. Currently supported are three types of predicates:

For example queries may be used to retrieve Values:

Performing a query

There are various ways to perform a query. They are presented below. All of them returns Values intersecting some region defined as a Box.

Member function call

std::vector<Value> returned_values;
Box box_region(...);
rt.query(bgi::intersects(box_region), std::back_inserter(returned_values));

Free function call

std::vector<Value> returned_values;
Box box_region(...);
bgi::query(rt, bgi::intersects(box_region), std::back_inserter(returned_values));

Range generated by operator|

Box box_region(...);
BOOST_FOREACH(Value & v, rt | bgi::adaptors::queried(bgi::intersects(box_region)))
  ; // do something with v

Query iterators returned by member functions

std::vector<Value> returned_values;
Box box_region(...);
std::copy(rt.qbegin(bgi::intersects(box_region)), rt.qend(), std::back_inserter(returned_values));

Query iterators returned by free functions

std::vector<Value> returned_values;
Box box_region(...);
std::copy(bgi::qbegin(rt, bgi::intersects(box_region)), bgi::qend(rt), std::back_inserter(returned_values));
Spatial predicates

Queries using spatial predicates returns Values which are related somehow to some Geometry - box, polygon, etc. Names of spatial predicates correspond to names of Boost.Geometry algorithms (boolean operations). Examples of some basic queries may be found in the tables below. The query region and result Values are orange.





















Spatial predicates are generated by functions defined in boost::geometry::index namespace.

rt.query(index::contains(box), std::back_inserter(result));
rt.query(index::covered_by(box), std::back_inserter(result));
rt.query(index::covers(box), std::back_inserter(result));
rt.query(index::disjont(box), std::back_inserter(result));
rt.query(index::intersects(box), std::back_inserter(result));
rt.query(index::overlaps(box), std::back_inserter(result));
rt.query(index::within(box), std::back_inserter(result));

All spatial predicates may be negated, e.g.:

rt.query(!index::intersects(box), std::back_inserter(result));
// the same as
rt.query(index::disjoint(box), std::back_inserter(result));
Nearest neighbours queries

Nearest neighbours queries returns Values which are closest to some point in space. The example of knn query is presented below. 5 Values nearest to the point are orange.


To perform the knn query one must pass the nearest predicate generated by the nearest() function defined in boost::geometry::index namespace. The following query returns k Values closest to some point in space. For non-point Indexables the shortest distance is calculated.

std::vector<Value> returned_values;
Point pt(...);
rt.query(bgi::nearest(pt, k), std::back_inserter(returned_values));
User-defined unary predicate

The user may pass a UnaryPredicate - function, function object or lambda expression taking const reference to Value and returning bool. This object may be passed to the query in order to check if Value should be returned by the query. To do it one may use index::satisfies() function like on the example below:

bool is_red(Value const& v)
  return v.is_red();

struct is_red_o
  template <typename Value>
  bool operator()(Value const& v)
    return v.is_red();

// ...

rt.query(index::intersects(box) && index::satisfies(is_red),

rt.query(index::intersects(box) && index::satisfies(is_red_o()),

rt.query(index::intersects(box) && index::satisfies([](Value const& v) { return v.is_red(); }),

satisfies() may be negated, e.g.:

bool is_red(Value const& v) { return v.is_red(); }
bool is_not_red(Value const& v) { return !v.is_red(); }

// ...

rt.query(index::intersects(box) && index::satisfies(is_red),
// the same as
rt.query(index::intersects(box) && !index::satisfies(is_not_red),
Passing a set of predicates

It's possible to use some number of predicates in one query by connecting them with operator&& e.g. Pred1 && Pred2 && Pred3 && ....

These predicates are connected by logical AND. Passing all predicates together not only makes possible to construct advanced queries but is also faster than separate calls because the tree is traversed only once. Traversing is continued and Values are returned only if all predicates are met. Predicates are checked left-to-right so placing most restrictive predicates first should accelerate the search.

rt.query(index::intersects(box1) && !index::within(box2),

rt.query(index::intersects(box1) && !index::within(box2) && index::overlaps(box3),

Of course it's possible to connect different types of predicates together.

index::query(rt, index::nearest(pt, k) && index::within(b), std::back_inserter(returned_values));

BOOST_FOREACH(Value & v, rt | index::adaptors::queried(index::nearest(pt, k) && index::covered_by(b)))
  ; // do something with v
Breaking or pausing the query

The query performed using query iterators may be paused and resumed if needed, e.g. when the query takes too long, or stopped at some point, e.g when all interesting values were gathered.

for ( Rtree::const_query_iterator it = tree.qbegin(bgi::nearest(pt, 10000)) ;
      it != tree.qend() ; ++it )
    // do something with value
    if ( has_enough_nearest_values() )
Inserting query results into the other R-tree

There are several ways of inserting Values returned by a query to the other R-tree container. The most basic way is creating a temporary container for Values and insert them later.

namespace bgi = boost::geometry::index;
typedef std::pair<Box, int> Value;
typedef bgi::rtree< Value, bgi::linear<32, 8> > RTree;

RTree rt1;
/* some inserting into the tree */

std::vector<Value> result;
rt1.query(bgi::intersects(Box(/*...*/)), std::back_inserter(result));
RTree rt2(result.begin(), result.end());

However there are better ways. One of these methods is mentioned in the "Creation and modification" section. The insert iterator may be passed directly into the query.

RTree rt3;
rt1.query(bgi::intersects(Box(/*...*/))), bgi::inserter(rt3));

If you like Boost.Range you'll appreciate the third option. You may pass the result Range directly into the constructor.

RTree rt4(rt1 | bgi::adaptors::queried(bgi::intersects(Box(/*...*/)))));