boost/accumulators/statistics/p_square_cumulative_distribution.hpp
///////////////////////////////////////////////////////////////////////////////
// p_square_cumulative_distribution.hpp
//
// Copyright 2005 Daniel Egloff, Olivier Gygi. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_ACCUMULATORS_STATISTICS_P_SQUARE_CUMULATIVE_DISTRIBUTION_HPP_DE_01_01_2006
#define BOOST_ACCUMULATORS_STATISTICS_P_SQUARE_CUMULATIVE_DISTRIBUTION_HPP_DE_01_01_2006
#include <vector>
#include <functional>
#include <boost/parameter/keyword.hpp>
#include <boost/range.hpp>
#include <boost/mpl/placeholders.hpp>
#include <boost/accumulators/framework/accumulator_base.hpp>
#include <boost/accumulators/framework/extractor.hpp>
#include <boost/accumulators/numeric/functional.hpp>
#include <boost/accumulators/framework/parameters/sample.hpp>
#include <boost/accumulators/statistics_fwd.hpp>
#include <boost/accumulators/statistics/count.hpp>
namespace boost { namespace accumulators
{
///////////////////////////////////////////////////////////////////////////////
// num_cells named parameter
//
BOOST_PARAMETER_NESTED_KEYWORD(tag, p_square_cumulative_distribution_num_cells, num_cells)
namespace impl
{
///////////////////////////////////////////////////////////////////////////////
// p_square_cumulative_distribution_impl
// cumulative_distribution calculation (as histogram)
/**
@brief Histogram calculation of the cumulative distribution with the \f$P^2\f$ algorithm
A histogram of the sample cumulative distribution is computed dynamically without storing samples
based on the \f$ P^2 \f$ algorithm. The returned histogram has a specifiable amount (num_cells)
equiprobable (and not equal-sized) cells.
For further details, see
R. Jain and I. Chlamtac, The P^2 algorithmus for dynamic calculation of quantiles and
histograms without storing observations, Communications of the ACM,
Volume 28 (October), Number 10, 1985, p. 1076-1085.
@param p_square_cumulative_distribution_num_cells.
*/
template<typename Sample>
struct p_square_cumulative_distribution_impl
: accumulator_base
{
typedef typename numeric::functional::average<Sample, std::size_t>::result_type float_type;
typedef std::vector<float_type> array_type;
typedef std::vector<std::pair<float_type, float_type> > histogram_type;
// for boost::result_of
typedef iterator_range<typename histogram_type::iterator> result_type;
template<typename Args>
p_square_cumulative_distribution_impl(Args const &args)
: num_cells(args[p_square_cumulative_distribution_num_cells])
, heights(num_cells + 1)
, actual_positions(num_cells + 1)
, desired_positions(num_cells + 1)
, positions_increments(num_cells + 1)
, histogram(num_cells + 1)
, is_dirty(true)
{
std::size_t b = this->num_cells;
for (std::size_t i = 0; i < b + 1; ++i)
{
this->actual_positions[i] = i + 1.;
this->desired_positions[i] = i + 1.;
this->positions_increments[i] = numeric::average(i, b);
}
}
template<typename Args>
void operator ()(Args const &args)
{
this->is_dirty = true;
std::size_t cnt = count(args);
std::size_t sample_cell = 1; // k
std::size_t b = this->num_cells;
// accumulate num_cells + 1 first samples
if (cnt <= b + 1)
{
this->heights[cnt - 1] = args[sample];
// complete the initialization of heights by sorting
if (cnt == b + 1)
{
std::sort(this->heights.begin(), this->heights.end());
}
}
else
{
// find cell k such that heights[k-1] <= args[sample] < heights[k] and adjust extreme values
if (args[sample] < this->heights[0])
{
this->heights[0] = args[sample];
sample_cell = 1;
}
else if (this->heights[b] <= args[sample])
{
this->heights[b] = args[sample];
sample_cell = b;
}
else
{
typename array_type::iterator it;
it = std::upper_bound(
this->heights.begin()
, this->heights.end()
, args[sample]
);
sample_cell = std::distance(this->heights.begin(), it);
}
// increment positions of markers above sample_cell
for (std::size_t i = sample_cell; i < b + 1; ++i)
{
++this->actual_positions[i];
}
// update desired position of markers 2 to num_cells + 1
// (desired position of first marker is always 1)
for (std::size_t i = 1; i < b + 1; ++i)
{
this->desired_positions[i] += this->positions_increments[i];
}
// adjust heights of markers 2 to num_cells if necessary
for (std::size_t i = 1; i < b; ++i)
{
// offset to desire position
float_type d = this->desired_positions[i] - this->actual_positions[i];
// offset to next position
float_type dp = this->actual_positions[i + 1] - this->actual_positions[i];
// offset to previous position
float_type dm = this->actual_positions[i - 1] - this->actual_positions[i];
// height ds
float_type hp = (this->heights[i + 1] - this->heights[i]) / dp;
float_type hm = (this->heights[i - 1] - this->heights[i]) / dm;
if ( ( d >= 1. && dp > 1. ) || ( d <= -1. && dm < -1. ) )
{
short sign_d = static_cast<short>(d / std::abs(d));
// try adjusting heights[i] using p-squared formula
float_type h = this->heights[i] + sign_d / (dp - dm) * ( (sign_d - dm) * hp + (dp - sign_d) * hm );
if ( this->heights[i - 1] < h && h < this->heights[i + 1] )
{
this->heights[i] = h;
}
else
{
// use linear formula
if (d>0)
{
this->heights[i] += hp;
}
if (d<0)
{
this->heights[i] -= hm;
}
}
this->actual_positions[i] += sign_d;
}
}
}
}
template<typename Args>
result_type result(Args const &args) const
{
if (this->is_dirty)
{
this->is_dirty = false;
// creates a vector of std::pair where each pair i holds
// the values heights[i] (x-axis of histogram) and
// actual_positions[i] / cnt (y-axis of histogram)
std::size_t cnt = count(args);
for (std::size_t i = 0; i < this->histogram.size(); ++i)
{
this->histogram[i] = std::make_pair(this->heights[i], numeric::average(this->actual_positions[i], cnt));
}
}
//return histogram;
return make_iterator_range(this->histogram);
}
private:
std::size_t num_cells; // number of cells b
array_type heights; // q_i
array_type actual_positions; // n_i
array_type desired_positions; // n'_i
array_type positions_increments; // dn'_i
mutable histogram_type histogram; // histogram
mutable bool is_dirty;
};
} // namespace detail
///////////////////////////////////////////////////////////////////////////////
// tag::p_square_cumulative_distribution
//
namespace tag
{
struct p_square_cumulative_distribution
: depends_on<count>
, p_square_cumulative_distribution_num_cells
{
/// INTERNAL ONLY
///
typedef accumulators::impl::p_square_cumulative_distribution_impl<mpl::_1> impl;
};
}
///////////////////////////////////////////////////////////////////////////////
// extract::p_square_cumulative_distribution
//
namespace extract
{
extractor<tag::p_square_cumulative_distribution> const p_square_cumulative_distribution = {};
BOOST_ACCUMULATORS_IGNORE_GLOBAL(p_square_cumulative_distribution)
}
using extract::p_square_cumulative_distribution;
// So that p_square_cumulative_distribution can be automatically substituted with
// weighted_p_square_cumulative_distribution when the weight parameter is non-void
template<>
struct as_weighted_feature<tag::p_square_cumulative_distribution>
{
typedef tag::weighted_p_square_cumulative_distribution type;
};
template<>
struct feature_of<tag::weighted_p_square_cumulative_distribution>
: feature_of<tag::p_square_cumulative_distribution>
{
};
}} // namespace boost::accumulators
#endif