boost/math/tools/series.hpp
// (C) Copyright John Maddock 2005-2006.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_TOOLS_SERIES_INCLUDED
#define BOOST_MATH_TOOLS_SERIES_INCLUDED
#ifdef _MSC_VER
#pragma once
#endif
#include <boost/config/no_tr1/cmath.hpp>
#include <boost/cstdint.hpp>
#include <boost/limits.hpp>
#include <boost/math/tools/config.hpp>
namespace boost{ namespace math{ namespace tools{
//
// Simple series summation come first:
//
template <class Functor, class U, class V>
inline typename Functor::result_type sum_series(Functor& func, const U& factor, boost::uintmax_t& max_terms, const V& init_value)
{
BOOST_MATH_STD_USING
typedef typename Functor::result_type result_type;
boost::uintmax_t counter = max_terms;
result_type result = init_value;
result_type next_term;
do{
next_term = func();
result += next_term;
}
while((fabs(factor * result) < fabs(next_term)) && --counter);
// set max_terms to the actual number of terms of the series evaluated:
max_terms = max_terms - counter;
return result;
}
template <class Functor, class U>
inline typename Functor::result_type sum_series(Functor& func, const U& factor, boost::uintmax_t& max_terms)
{
typename Functor::result_type init_value = 0;
return sum_series(func, factor, max_terms, init_value);
}
template <class Functor, class U>
inline typename Functor::result_type sum_series(Functor& func, int bits, boost::uintmax_t& max_terms, const U& init_value)
{
BOOST_MATH_STD_USING
typedef typename Functor::result_type result_type;
result_type factor = ldexp(result_type(1), 1 - bits);
return sum_series(func, factor, max_terms, init_value);
}
template <class Functor>
inline typename Functor::result_type sum_series(Functor& func, int bits)
{
BOOST_MATH_STD_USING
typedef typename Functor::result_type result_type;
boost::uintmax_t iters = (std::numeric_limits<boost::uintmax_t>::max)();
result_type init_val = 0;
return sum_series(func, bits, iters, init_val);
}
template <class Functor>
inline typename Functor::result_type sum_series(Functor& func, int bits, boost::uintmax_t& max_terms)
{
BOOST_MATH_STD_USING
typedef typename Functor::result_type result_type;
result_type init_val = 0;
return sum_series(func, bits, max_terms, init_val);
}
template <class Functor, class U>
inline typename Functor::result_type sum_series(Functor& func, int bits, const U& init_value)
{
BOOST_MATH_STD_USING
boost::uintmax_t iters = (std::numeric_limits<boost::uintmax_t>::max)();
return sum_series(func, bits, iters, init_value);
}
//
// Algorithm kahan_sum_series invokes Functor func until the N'th
// term is too small to have any effect on the total, the terms
// are added using the Kahan summation method.
//
// CAUTION: Optimizing compilers combined with extended-precision
// machine registers conspire to render this algorithm partly broken:
// double rounding of intermediate terms (first to a long double machine
// register, and then to a double result) cause the rounding error computed
// by the algorithm to be off by up to 1ulp. However this occurs rarely, and
// in any case the result is still much better than a naive summation.
//
template <class Functor>
inline typename Functor::result_type kahan_sum_series(Functor& func, int bits)
{
BOOST_MATH_STD_USING
typedef typename Functor::result_type result_type;
result_type factor = pow(result_type(2), bits);
result_type result = func();
result_type next_term, y, t;
result_type carry = 0;
do{
next_term = func();
y = next_term - carry;
t = result + y;
carry = t - result;
carry -= y;
result = t;
}
while(fabs(result) < fabs(factor * next_term));
return result;
}
template <class Functor>
inline typename Functor::result_type kahan_sum_series(Functor& func, int bits, boost::uintmax_t& max_terms)
{
BOOST_MATH_STD_USING
typedef typename Functor::result_type result_type;
boost::uintmax_t counter = max_terms;
result_type factor = ldexp(result_type(1), bits);
result_type result = func();
result_type next_term, y, t;
result_type carry = 0;
do{
next_term = func();
y = next_term - carry;
t = result + y;
carry = t - result;
carry -= y;
result = t;
}
while((fabs(result) < fabs(factor * next_term)) && --counter);
// set max_terms to the actual number of terms of the series evaluated:
max_terms = max_terms - counter;
return result;
}
} // namespace tools
} // namespace math
} // namespace boost
#endif // BOOST_MATH_TOOLS_SERIES_INCLUDED