Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

This is the documentation for an old version of boost. Click here for the latest Boost documentation.
PrevUpHomeNext
Negative Binomial Table Printing Example.

Example program showing output of a table of values of cdf and pdf for various k failures.

// Print a table of values that can be used to plot
// using Excel, or some other superior graphical display tool.

cout.precision(17); // Use max_digits10 precision, the maximum available for a reference table.
cout << showpoint << endl; // include trailing zeros.
// This is a maximum possible precision for the type (here double) to suit a reference table.
int maxk = static_cast<int>(2. * mynbdist.successes() /  mynbdist.success_fraction());
// This maxk shows most of the range of interest, probability about 0.0001 to 0.999.
cout << "\n"" k            pdf                      cdf""\n" << endl;
for (int k = 0; k < maxk; k++)
{
  cout << right << setprecision(17) << showpoint
    << right << setw(3) << k  << ", "
    << left << setw(25) << pdf(mynbdist, static_cast<double>(k))
    << left << setw(25) << cdf(mynbdist, static_cast<double>(k))
    << endl;
}
cout << endl;

k            pdf                      cdf
 0, 1.5258789062500000e-005  1.5258789062500003e-005  
 1, 9.1552734375000000e-005  0.00010681152343750000   
 2, 0.00030899047851562522   0.00041580200195312500   
 3, 0.00077247619628906272   0.0011882781982421875    
 4, 0.0015932321548461918    0.0027815103530883789    
 5, 0.0028678178787231476    0.0056493282318115234    
 6, 0.0046602040529251142    0.010309532284736633     
 7, 0.0069903060793876605    0.017299838364124298     
 8, 0.0098301179241389001    0.027129956288263202     
 9, 0.013106823898851871     0.040236780187115073     
10, 0.016711200471036140     0.056947980658151209     
11, 0.020509200578089786     0.077457181236241013     
12, 0.024354675686481652     0.10181185692272265      
13, 0.028101548869017230     0.12991340579173993      
14, 0.031614242477644432     0.16152764826938440      
15, 0.034775666725408917     0.19630331499479325      
16, 0.037492515688331451     0.23379583068312471      
17, 0.039697957787645101     0.27349378847076977      
18, 0.041352039362130305     0.31484582783290005      
19, 0.042440250924291580     0.35728607875719176      
20, 0.042970754060845245     0.40025683281803687      
21, 0.042970754060845225     0.44322758687888220      
22, 0.042482450037426581     0.48571003691630876      
23, 0.041558918514873783     0.52726895543118257      
24, 0.040260202311284021     0.56752915774246648      
25, 0.038649794218832620     0.60617895196129912      
26, 0.036791631035234917     0.64297058299653398      
27, 0.034747651533277427     0.67771823452981139      
28, 0.032575923312447595     0.71029415784225891      
29, 0.030329307911589130     0.74062346575384819      
30, 0.028054609818219924     0.76867807557206813      
31, 0.025792141284492545     0.79447021685656061      
32, 0.023575629142856460     0.81804584599941710      
33, 0.021432390129869489     0.83947823612928651      
34, 0.019383705779220189     0.85886194190850684      
35, 0.017445335201298231     0.87630727710980494      
36, 0.015628112784496322     0.89193538989430121      
37, 0.013938587078064250     0.90587397697236549      
38, 0.012379666154859701     0.91825364312722524      
39, 0.010951243136991251     0.92920488626421649      
40, 0.0096507830144735539    0.93885566927869002      
41, 0.0084738582566109364    0.94732952753530097      
42, 0.0074146259745345548    0.95474415350983555      
43, 0.0064662435824429246    0.96121039709227851      
44, 0.0056212231142827853    0.96683162020656122      
45, 0.0048717266990450708    0.97170334690560634      
46, 0.0042098073105878630    0.97591315421619418      
47, 0.0036275999165703964    0.97954075413276465      
48, 0.0031174686783026818    0.98265822281106729      
49, 0.0026721160099737302    0.98533033882104104      
50, 0.0022846591885275322    0.98761499800956853      
51, 0.0019486798960970148    0.98956367790566557      
52, 0.0016582516423517923    0.99122192954801736      
53, 0.0014079495076571762    0.99262987905567457      
54, 0.0011928461106539983    0.99382272516632852      
55, 0.0010084971662802015    0.99483122233260868      
56, 0.00085091948404891532   0.99568214181665760      
57, 0.00071656377604119542   0.99639870559269883      
58, 0.00060228420831048650   0.99700098980100937      
59, 0.00050530624256557675   0.99750629604357488      
60, 0.00042319397814867202   0.99792949002172360      
61, 0.00035381791615708398   0.99828330793788067      
62, 0.00029532382517950324   0.99857863176306016      
63, 0.00024610318764958566   0.99882473495070978      


PrevUpHomeNext