Boost C++ Libraries of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

This is the documentation for an old version of boost. Click here for the latest Boost documentation.

Credits and Acknowledgements

Hubert Holin started the Boost.Math library. The inverse hyperbolic functions, and the sinus cardinal functions are his.

John Maddock started this library, the beta, gamma, erf, polynomial, and factorial functions are his, as is the "Toolkit" section, and many of the statistical distributions.

Paul A. Bristow threw down the challenge in A Proposal to add Mathematical Functions for Statistics to the C++ Standard Library to add the key math functions, especially those essential for statistics. After JM accepted and solved the difficult problems, not only numerically, but in full C++ template style, PAB implemented a few of the statistical distributions. PAB also tirelessly proof-read everything that JM threw at him (so that all remaining editorial mistakes are his fault).

Xiaogang Zhang worked on the Bessel functions and elliptic integrals for his Google Summer of Code project 2006.

Bruno Lalande submitted the "compile time power of a runtime base" code.

Johan Råde wrote the optimised floating point classification code.

Gautam Sewani coded the logistic distribution as part of a Google Summer of Code project 2008.

M. A. (Thijs) van den Berg coded the Laplace distribution. (Thijs has also threatened to implement some multivariate distributions).

Thomas Mang requested the inverse gamma in chi squared distributions for Bayesian applications and helped in their implementation.

Professor Nico Temme for advice on the inverse incomplete beta function.

Victor Shoup for NTL, without which it would have much more difficult to produce high accuracy constants, and especially the tables of accurate values for testing.

We are grateful to Joel Guzman for helping us stress-test his Boost.Quickbook program used to generate the html and pdf versions of this document, adding several new features en route.

Thanks to Mark Coleman and Georgi Boshnakov for spot test values from Wolfram Mathematica, and of course, to Eric Weissten for nurturing Wolfram MathWorld, an invaluable resource.

Plots of the functions and distributions were prepared in W3C standard Scalable Vector Graphic (SVG) format using a program created by Jacob Voytko during a Google Summer of Code (2007). Since browser support for rendering SVG is still not universal (Microsoft Internet Explorer, even IE 8 beta, still lacks native SVG support but can be made to work with Adobe's free SVG viewer plugin), so the SVG files were batch converted to JPEG using Inkscape.

We are also indebted to Matthias Schabel for managing the formal Boost-review of this library, and to all the reviewers - including Guillaume Melquiond, Arnaldur Gylfason, John Phillips, Stephan Tolksdorf and Jeff Garland - for their many helpful comments.