...one of the most highly
regarded and expertly designed C++ library projects in the
world.
— Herb Sutter and Andrei
Alexandrescu, C++
Coding Standards
This section describes how to use the Boost.Accumulators framework to create new accumulators and how to use the existing statistical accumulators to perform incremental statistical computation. For detailed information regarding specific components in Boost.Accumulators, check the Reference section.
Below is a complete example of how to use the Accumulators Framework and the Statistical Accumulators to perform an incremental statistical calculation. It calculates the mean and 2nd moment of a sequence of doubles.
#include <iostream> #include <boost/accumulators/accumulators.hpp> #include <boost/accumulators/statistics/stats.hpp> #include <boost/accumulators/statistics/mean.hpp> #include <boost/accumulators/statistics/moment.hpp> using namespace boost::accumulators; int main() { // Define an accumulator set for calculating the mean and the // 2nd moment ... accumulator_set<double, stats<tag::mean, tag::moment<2> > > acc; // push in some data ... acc(1.2); acc(2.3); acc(3.4); acc(4.5); // Display the results ... std::cout << "Mean: " << mean(acc) << std::endl; std::cout << "Moment: " << accumulators::moment<2>(acc) << std::endl; return 0; }
This program displays the following:
Mean: 2.85 Moment: 9.635
The Accumulators Framework is framework for performing incremental calculations. Usage of the framework follows the following pattern:
accumulator_set<>
,
by selecting the computations in which they are interested, or authoring
their own computational primitives which fit within the framework.
accumulator_set<>
object one sample at a time.
accumulator_set<>
computes the requested quantities in the most efficient method possible,
resolving dependencies between requested calculations, possibly cacheing
intermediate results.
The Accumulators Framework defines the utilities needed for defining primitive
computational elements, called accumulators. It also
provides the accumulator_set<>
type, described above.
The following terms are used in the rest of the documentation.
A datum that is pushed into an accumulator_set<>
. The type of the
sample is the sample type.
An optional scalar value passed along with the sample specifying the weight of the sample. Conceptually, each sample is multiplied with its weight. The type of the weight is the weight type.
An abstract primitive computational entity. When defining an accumulator_set<>
, users specify
the features in which they are interested, and the accumulator_set<>
figures out which accumulators would best provide
those features. Features may depend on other features. If they do,
the accumulator set figures out which accumulators to add to satisfy
the dependencies.
A concrete primitive computational entity. An accumulator is a concrete implementation of a feature. It satisfies exactly one abstract feature. Several different accumulators may provide the same feature, but may represent different implementation strategies.
A collection of accumulators. An accumulator set is specified with a sample type and a list of features. The accumulator set uses this information to generate an ordered set of accumulators depending on the feature dependency graph. An accumulator set accepts samples one datum at a time, propogating them to each accumulator in order. At any point, results can be extracted from the accumulator set.
A function or function object that can be used to extract a result
from an accumulator_set<>
.
Here is a list of the important types and functions in the Accumulator Framework and a brief description of each.
Table 1.1. Accumulators Toolbox
Tool |
Description |
---|---|
This is the most important type in the Accumulators Framework.
It is a collection of accumulators. A datum pushed into an |
|
Used to specify which other features a feature depends on. |
|
Trait used to tell the Accumulators Framework that, for the purpose of feature-based dependency resolution, one feature should be treated the same as another. |
|
Used to create an alias for a feature. For example, if there are
two features, fast_X and accurate_X, they can be mapped to X(fast)
and X(accurate) with |
|
An MPL sequence.
We can use |
|
|
Used when declaring an |
|
A class template useful for creating an extractor function object.
It is parameterized on a feature, and it has member functions for
extracting from an |
Our tour of the accumulator_set<>
class template begins with the forward declaration:
template< typename Sample, typename Features, typename Weight = void > struct accumulator_set;
The template parameters have the following meaning:
Sample
The type of the data that will be accumulated.
Features
An MPL sequence of features to be calculated.
Weight
The type of the (optional) weight paramter.
For example, the following line declares an accumulator_set<>
that will accept a sequence of doubles one at a time and calculate the
min and mean:
accumulator_set< double, features< tag::min, tag::mean > > acc;
Notice that we use the features<>
template to specify a list of features to be calculated. features<>
is an MPL sequence of features.
Note | |
---|---|
|
Once we have defined an accumulator_set<>
,
we can then push data into it, and it will calculate the quantities you
requested, as shown below.
// push some data into the accumulator_set ... acc(1.2); acc(2.3); acc(3.4);
Since accumulator_set<>
defines its accumulate function to be the function call operator, we might
be tempted to use an accumulator_set<>
as a UnaryFunction to a standard algorithm such as std::for_each
.
That's fine as long as we keep in mind that the standard algorithms take
UnaryFunction objects by value, which involves making a copy of the accumulator_set<>
object. Consider the
following:
// The data for which we wish to calculate statistical properties: std::vector< double > data( /* stuff */ ); // The accumulator set which will calculate the properties for us: accumulator_set< double, features< tag::min, tag::mean > > acc; // Use std::for_each to accumulate the statistical properties: acc = std::for_each( data.begin(), data.end(), acc );
Notice how we must assign the return value of std::for_each
back to the accumulator_set<>
.
This works, but some accumulators are not cheap to copy. For example, the
tail
and tail_variate<>
accumulators must store a std::vector<>
, so copying these accumulators
involves a dynamic allocation. We might be better off in this case passing
the accumulator by reference, with the help of boost::bind()
and boost::ref()
. See below:
// The data for which we wish to calculate statistical properties: std::vector< double > data( /* stuff */ ); // The accumulator set which will calculate the properties for us: accumulator_set< double, features< tag::tail<left> > > acc( tag::tail<left>::cache_size = 4 ); // Use std::for_each to accumulate the statistical properties: std::for_each( data.begin(), data.end(), bind<void>( ref(acc), _1 ) );
Notice now that we don't care about the return value of std::for_each()
anymore because std::for_each()
is modifying acc
directly.
Note | |
---|---|
To use |
Once we have declared an accumulator_set<>
and pushed data into it, we need to be able to extract results from it.
For each feature we can add to an accumulator_set<>
,
there is a corresponding extractor for fetching its result. Usually, the
extractor has the same name as the feature, but in a different namespace.
For example, if we accumulate the tag::min
and tag::max
features, we can extract the results
with the min
and max
extractors, as follows:
// Calculate the minimum and maximum for a sequence of integers. accumulator_set< int, features< tag::min, tag::max > > acc; acc( 2 ); acc( -1 ); acc( 1 ); // This displays "(-1, 2)" std::cout << '(' << min( acc ) << ", " << max( acc ) << ")\n";
The extractors are all declared in the boost::accumulators::extract
namespace, but they are brought into the boost::accumulators
namespace with a using
declaration.
Tip | |
---|---|
On the Windows platform, |
Another way to extract a result from an accumulator_set<>
is with the extract_result()
function. This can be more convenient
if there isn't an extractor object handy for a certain feature. The line
above which displays results could equally be written as:
// This displays "(-1, 2)" std::cout << '(' << extract_result< tag::min >( acc ) << ", " << extract_result< tag::max >( acc ) << ")\n";
Finally, we can define our own extractor using the extractor<>
class template. For instance, another way to avoid the min
/ max
macro business would
be to define extractors with names that don't conflict with the macros,
like this:
extractor< tag::min > min_; extractor< tag::min > max_; // This displays "(-1, 2)" std::cout << '(' << min_( acc ) << ", " << max_( acc ) << ")\n";
Some accumulators need initialization parameters. In addition, perhaps
some auxiliary information needs to be passed into the accumulator_set<>
along with each sample. Boost.Accumulators handles these cases with named
parameters from the Boost.Parameter
library.
For example, consider the tail
and tail_variate<>
features. tail
keeps an ordered list
of the largest N
samples, where
N
can be specified at construction
time. Also, the tail_variate<>
feature, which depends on tail
, keeps track of some
data that is covariate with the N
samples tracked by tail
. The code below shows
how this all works, and is described in more detail below.
// Define a feature for tracking covariate data typedef tag::tail_variate< int, tag::covariate1, left > my_tail_variate_tag; // This will calculate the left tail and my_tail_variate_tag for N == 2 // using the tag::tail<left>::cache_size named parameter accumulator_set< double, features< my_tail_variate_tag > > acc( tag::tail<left>::cache_size = 2 ); // push in some samples and some covariates by using // the covariate1 named parameter acc( 1.2, covariate1 = 12 ); acc( 2.3, covariate1 = -23 ); acc( 3.4, covariate1 = 34 ); acc( 4.5, covariate1 = -45 ); // Define an extractor for the my_tail_variate_tag feature extractor< my_tail_variate_tag > my_tail_variate; // Write the tail statistic to std::cout. This will print "4.5, 3.4, " std::ostream_iterator< double > dout( std::cout, ", " ); std::copy( tail( acc ).begin(), tail( acc ).end(), dout ); // Write the tail_variate statistic to std::cout. This will print "-45, 34, " std::ostream_iterator< int > iout( std::cout, ", " ); std::copy( my_tail_variate( acc ).begin(), my_tail_variate( acc ).end(), iout );
There are several things to note about the code above. First, notice that
we didn't have to request that the tail
feature be calculated.
That is implicit because the tail_variate<>
feature depends on the tail
feature. Next, notice
how the acc
object is initialized:
acc(
tag::tail<left>::cache_size =
2 )
.
Here, cache_size
is a named
parameter. It is used to tell the tail
and tail_variate<>
accumulators how many samples and covariates to store. Conceptually, every
construction parameter is made available to every accumulator in an accumulator
set.
We also use a named parameter to pass covariate data into the accumulator
set along with the samples. As with the constructor parameters, all parameters
to the accumulate function are made available to all the accumulators in
the set. In this case, only the accumulator for the my_tail_variate
feature would be interested in the value of the covariate1
named parameter.
We can make one final observation about the example above. Since tail
and tail_variate<>
are multi-valued features, the result we extract for them is represented
as an iterator range. That is why we can say tail( acc ).begin()
and tail( acc ).end()
.
Even the extractors can accept named parameters. In a bit, we'll see a situation where that is useful.
Some accumulators, statistical accumulators in particular, deal with data
that are weighted. Each sample pushed into the accumulator
has an associated weight, by which the sample is conceptually multiplied.
The Statistical Accumulators Library provides an assortment of these weighted
statistical accumulators. And many unweighted statistical accumulators
have weighted variants. For instance, the weighted variant of the sum
accumulator is called weighted_sum
, and is calculated by accumulating
all the samples multiplied by their weights.
To declare an accumulator_set<>
that accepts weighted samples, you must specify the type of the weight
parameter as the 3rd template parameter, as follows:
// 3rd template parameter 'int' means this is a weighted // accumulator set where the weights have type 'int' accumulator_set< int, features< tag::sum >, int > acc;
When you specify a weight, all the accumulators in the set are replaced
with their weighted equivalents. For example, the above accumulator_set<>
declaration is equivalent to the following:
// Since we specified a weight, tag::sum becomes tag::weighted_sum accumulator_set< int, features< tag::weighted_sum >, int > acc;
When passing samples to the accumulator set, you must also specify the
weight of each sample. You can do that with the weight
named parameter, as follows:
acc(1, weight = 2); // 1 * 2 acc(2, weight = 4); // 2 * 4 acc(3, weight = 6); // + 3 * 6 // ------- // = 28
You can then extract the result with the sum()
extractor, as follows:
// This prints "28" std::cout << sum(acc) << std::endl;
Note | |
---|---|
When working with weighted statistical accumulators from the Statistical
Accumulators Library, be sure to include the appropriate header. For
instance, |
This section describes the function objects in the boost::numeric
namespace, which is a sub-library that provides function objects and meta-functions
corresponding to the infix operators in C++.
In the boost::numeric::operators
namespace are additional operator
overloads for some useful operations not provided by the standard library,
such as multiplication of a std::complex<>
with a scalar.
In the boost::numeric::functional
namespace are function object
equivalents of the infix operators. These function object types are heterogeneous,
and so are more general than the standard ones found in the <functional>
header. They use the Boost.Typeof library to deduce the return types of
the infix expressions they evaluate. In addition, they look within the
boost::numeric::operators
namespace to consider any additional
overloads that might be defined there.
In the boost::numeric
namespace are global polymorphic
function objects corresponding to the function object types defined in
the boost::numeric::functional
namespace. For example, boost::numeric::plus(a, b)
is equivalent to boost::numeric::functional::plus<A, B>()(a, b)
, and both are equivalent to using namespace
boost::numeric::operators;
a +
b;
.
The Numeric Operators Sub-Library also gives several ways to sub-class and a way to sub-class and specialize operations. One way uses tag dispatching on the types of the operands. The other way is based on the compile-time properties of the operands.
This section describes how to extend the Accumulators Framework by defining new accumulators, features and extractors. Also covered are how to control the dependency resolution of features within an accumulator set.
All new accumulators must satisfy the Accumulator Concept. Below is a sample class that satisfies the accumulator concept, which simply sums the values of all samples passed into it.
#include <boost/accumulators/framework/accumulator_base.hpp> #include <boost/accumulators/framework/parameters/sample.hpp> namespace boost { // Putting your accumulators in the namespace accumulators { // impl namespace has some namespace impl { // advantages. See below. template<typename Sample> struct sum_accumulator // All accumulators should inherit from : accumulator_base // accumulator_base. { typedef Sample result_type; // The type returned by result() below. template<typename Args> // The constructor takes an argument pack. sum_accumulator(Args const & args) : sum(args[sample | Sample()]) // Maybe there is an initial value in the { // argument pack. ('sample' is defined in } // sample.hpp, included above.) template<typename Args> // The accumulate function is the function void operator ()(Args const & args) // call operator, and it also accepts an { // argument pack. this->sum += args[sample]; } result_type result(dont_care) const // The result function will also be passed { // an argument pack, but we don't use it here, return this->sum; // so we use "dont_care" as the argument type. } private: Sample sum; }; }}}
Much of the above should be pretty self-explanatory, except for the use
of argument packs which may be confusing if you have never used the
Boost.Parameter
library before. An argument pack is a cluster of values, each of which
can be accessed with a key. So args[sample]
extracts from the pack the value associated
with the sample
key.
And the cryptic args[sample | Sample()]
evaluates to the value associated
with the sample
key if
it exists, or a default-constructed Sample
if it doesn't.
The example above demonstrates the most common attributes of an accumulator. There are other optional member functions that have special meaning. In particular:
Optional Accumulator Member Functions
on_drop(Args)
Defines an action to be taken when this accumulator is dropped. See the section on Droppable Accumulators.
Some accumulators depend on other accumulators within the same accumulator
set. In those cases, it is necessary to be able to access those other
accumulators. To make this possible, the accumulator_set<>
passes a reference to itself when invoking the member functions of its
contained accumulators. It can be accessed by using the special accumulator
key with the argument pack.
Consider how we might implement mean_accumulator
:
// Mean == (Sum / Count) template<typename Sample> struct mean_accumulator : accumulator_base { typedef Sample result_type; mean_accumulator(dont_care) {} template<typename Args> result_type result(Args const &args) const { return sum(args[accumulator]) / count(args[accumulator]); } };
mean
depends on the
sum
and count
accumulators. (We'll see in the
next section how to specify these dependencies.) The result of the mean
accumulator is merely the result of the sum accumulator divided by the
result of the count accumulator. Consider how we write that: sum(args[accumulator])
/ count(args[accumulator])
. The expression args[accumulator]
evaluates to a reference to the accumulator_set<>
that contains this
mean_accumulator
. It
also contains the sum
and count
accumulators,
and we can access their results with the extractors defined for those
features: sum
and count
.
Note | |
---|---|
Accumulators that inherit from |
All the member functions that accept an argument pack have access to
the enclosing accumulator_set<>
via the accumulator
key,
including the constructor. The accumulators within the set are constructed
in an order determined by their interdependencies. As a result, it is
safe for an accumulator to access one on which it depends during construction.
Although not necessary, it can be a good idea to put your accumulator
implementations in the boost::accumulators::impl
namespace. This namespace pulls in any operators defined in the boost::numeric::operators
namespace with a using directive.
The Numeric Operators Sub-Library defines some additional overloads that
will make your accumulators work with all sorts of data types.
Consider mean_accumulator
defined above. It divides the sum of the samples by the count. The type
of the count is std::size_t
. What if the sample type doesn't
define division by std::size_t
?
That's the case for std::complex<>
. You might think that if the
sample type is std::complex<>
,
the code would not work, but in fact it does. That's because Numeric
Operators Sub-Library defines an overloaded operator/
for std::complex<>
and std::size_t
.
This operator is defined in the boost::numeric::operators
namespace and will be found within the boost::accumulators::impl
namespace. That's why it's a good idea to put your accumulators there.
The term "droppable" refers to an accumulator that can be removed
from the accumulator_set<>
.
You can request that an accumulator be made droppable by using the droppable<>
class template.
// calculate sum and count, make sum droppable: accumulator_set< double, features< tag::count, droppable<tag::sum> > > acc; // add some data acc(3.0); acc(2.0); // drop the sum (sum is 5 here) acc.drop<tag::sum>(); // add more data acc(1.0); // This will display "3" and "5" std::cout << count(acc) << ' ' << sum(acc);
Any accumulators that get added to an accumulator set in order to satisfy dependencies on droppable accumulators are themselves droppable. Consider the following accumulator:
// Sum is not droppable. Mean is droppable. Count, brought in to // satisfy mean's dependencies, is implicitly droppable, too. accumulator_set< double, features< tag::sum, droppable<tag::mean> > > acc;
mean
depends on sum
and count
.
Since mean
is droppable,
so too is count
. However,
we have explictitly requested that sum
be not droppable, so it isn't. Had we left tag::sum
out of the above declaration, the sum
accumulator would have been implicitly droppable.
A droppable accumulator is reference counted, and is only really dropped after all the accumulators that depend on it have been dropped. This can lead to some surprising behavior in some situations.
// calculate sum and mean, make mean droppable. accumulator_set< double, features< tag::sum, droppable<tag::mean> > > acc; // add some data acc(1.0); acc(2.0); // drop the mean. mean's reference count // drops to 0, so it's really dropped. So // too, count's reference count drops to 0 // and is really dropped. acc.drop<tag::mean>(); // add more data. Sum continues to accumulate! acc(3.0); // This will display "6 2 3" std::cout << sum(acc) << ' ' << count(acc) << ' ' << mean(acc);
Note that at the point at which mean
is dropped, sum
is 3,
count
is 2, and therefore
mean
is 1.5. But since
sum
continues to accumulate
even after mean
has been
dropped, the value of mean
continues to change. If you want to remember the value of mean
at the point it is dropped, you
should save its value into a local variable.
The following rules more precisely specify how droppable and non-droppable accumulators behave within an accumulator set.
X
,
both X
and droppable<X>
satisfy the X
dependency.
X
depends
on Y
and Z
, then droppable<X>
depends on droppable<Y>
and droppable<Z>
.
add_ref()
and drop()
member functions.
drop()
is a no-op, and add_ref()
invokes add_ref()
on all accumulators corresponding
to the features upon which the current accumulator depends.
add_ref()
and drop()
to manipulate the reference count.
add_ref()
increments the accumulator's reference
count, and also add_ref()
's the accumulators corresponding
to the features upon which the current accumulator depends.
drop()
decrements the accumulator's reference
count, and also drop()
's the accumulators corresponding
to the features upon which the current accumulator depends.
add_ref()
's the accumulator that corresponds
to each of them. (Note: that means that an accumulator that is not
user-specified but in the set merely to satisfy a dependency will
be dropped as soon as all its dependencies have been dropped. Ones
that have been user specified are not dropped until their dependencies
have been dropped and the user has
explicitly dropped the accumulator.)
And as an optimization:
X
,
which depends on Y
and Z
, then the accumulators
for Y
and Z
can be safely made non-droppable,
as well as any accumulators on which they depend.
Once we have implemented an accumulator, we must define a feature for
it so that users can specify the feature when declaring an accumulator_set<>
. We typically put
the features into a nested namespace, so that later we can define an
extractor of the same name. All features must satisfy the Feature
Concept. Using depends_on<>
makes satisfying the concept simple. Below is an example of a feature
definition.
namespace boost { namespace accumulators { namespace tag { struct mean // Features should inherit from : depends_on< count, sum > // depends_on<> to specify dependencies { // Define a nested typedef called 'impl' that specifies which // accumulator implements this feature. typedef accumulators::impl::mean_accumulator< mpl::_1 > impl; }; }}}
The only two things we must do to define the mean
feature is to specify the dependencies with depends_on<>
and define the nested impl
typedef. Even features that have no dependencies should inherit from
depends_on<>
. The nested impl
type must be an MPL
Lambda Expression. The result of mpl::apply< impl,
must be be the type of the accumulator
that implements this feature. The use of MPL
placeholders like sample-type
, weight-type
>::typempl::_1
make it especially easy to make a template such as mean_accumulator<>
an MPL
Lambda Expression. Here, mpl::_1
will be replaced with the sample type. Had we used mpl::_2
,
it would have been replaced with the weight type.
What about accumulator types that are not templates? If you have a foo_accumulator
which is a plain struct
and not a template, you could turn it into an MPL
Lambda Expression using mpl::always<>
, like this:
// An MPL lambda expression that always evaluates to // foo_accumulator: typedef mpl::always< foo_accumulator > impl;
If you are ever unsure, or if you are not comfortable with MPL lambda
expressions, you could always define impl
explicitly:
// Same as 'typedef mpl::always< foo_accumulator > impl;' struct impl { template< typename Sample, typename Weight > struct apply { typedef foo_accumulator type; }; };
Here, impl
is a binary
MPL
Metafunction Class, which is a kind of MPL
Lambda Expression. The nested apply<>
template is part of the metafunction
class protocol and tells MPL how to to build the accumulator type given
the sample and weight types.
All features must also provide a nested is_weight_accumulator
typedef. It must be either mpl::true_
or mpl::false_
. depends_on<>
provides a default of mpl::false_
for all features that inherit from it, but that can be overridden (or
hidden, technically speaking) in the derived type. When the feature represents
an accumulation of information about the weights instead of the samples,
we can mark this feature as such with typedef
mpl::true_ is_weight_accumulator;
. The weight accumulators are made external
if the weight type is specified using the external<>
template.
Now that we have an accumulator and a feature, the only thing lacking
is a way to get results from the accumulator set. The Accumulators Framework
provides the extractor<>
class template to make it simple to define an extractor for your feature.
Here's an extractor for the mean
feature we defined above:
namespace boost { namespace accumulators { // By convention, we put extractors namespace extract { // in the 'extract' namespace extractor< tag::mean > const mean = {}; // Simply define our extractor with // our feature tag, like this. } using extract::mean; // Pull the extractor into the // enclosing namespace. }}
Once defined, the mean
extractor can be used to extract the result of the tag::mean
feature from an accumulator_set<>
.
Parameterized features complicate this simple picture. Consider the
moment
feature, for calculating
the N
-th moment, where N
is specified as a template parameter:
// An accumulator set for calculating the N-th moment, for N == 2 ... accumulator_set< double, features< tag::moment<2> > > acc; // ... add some data ... // Display the 2nd moment ... std::cout << "2nd moment is " << accumulators::moment<2>(acc) << std::endl;
In the expression accumulators::moment<2>(acc)
,
what is moment
? It cannot
be an object -- the syntax of C++ will not allow it. Clearly, if we want
to provide this syntax, we must make moment
a function template. Here's what the definition of the moment
extractor looks like:
namespace boost { namespace accumulators { // By convention, we put extractors namespace extract { // in the 'extract' namespace template<int N, typename AccumulatorSet> typename mpl::apply<AccumulatorSet, tag::moment<N> >::type::result_type moment(AccumulatorSet const &acc) { return extract_result<tag::moment<N> >(acc); } } using extract::moment; // Pull the extractor into the // enclosing namespace. }}
The return type deserves some explanation. Every accumulator_set<>
type is actually a unary MPL
Metafunction Class. When you mpl::apply<>
an accumulator_set<>
and a feature, the result is the type of the accumulator within the set
that implements that feature. And every accumulator provides a nested
result_type
typedef that
tells what its return type is. The extractor simply delegates its work
to the extract_result()
function.
The feature-based dependency resolution of the Accumulators Framework is designed to allow multiple different implementation strategies for each feature. For instance, two different accumulators may calculate the same quantity with different rounding modes, or using different algorithms with different size/speed tradeoffs. Other accumulators that depend on that quantity shouldn't care how it's calculated. The Accumulators Framework handles this by allowing several different accumulators satisfy the same feature.
Aliasing feature dependencies with feature_of<>
Imagine that you would like to implement the hypothetical fubar
statistic, and that you know two ways to calculate fubar on a bunch of
samples: an accurate but slow calculation and an approximate but fast
calculation. You might opt to make the accurate calculation the default,
so you implement two accumulators and call them impl::fubar_impl
and impl::fast_fubar_impl
. You would also define
the tag::fubar
and tag::fast_fubar
features as described above.
Now, you would like to inform the Accumulators Framework that these two
features are the same from the point of view of dependency resolution.
You can do that with feature_of<>
,
as follows:
namespace boost { namespace accumulators { // For the purposes of feature-based dependency resolution, // fast_fubar provides the same feature as fubar template<> struct feature_of<tag::fast_fubar> : feature_of<tag::fubar> { }; }}
The above code instructs the Accumulators Framework that, if another
accumulator in the set depends on the tag::fubar
feature, the tag::fast_fubar
feature is an acceptable
substitute.
Registering feature variants with as_feature<>
You may have noticed that some feature variants in the Accumulators Framework
can be specified with a nicer syntax. For instance, instead of tag::mean
and tag::immediate_mean
you can specify them with tag::mean(lazy)
and tag::mean(immediate)
respectively. These are merely aliases,
but the syntax makes the relationship between the two clearer. You can
create these feature aliases with the as_feature<>
trait. Given the fubar example above, you might decide to alias tag::fubar(accurate)
with tag::fubar
and tag::fubar(fast)
with tag::fast_fubar
.
You would do that as follows:
namespace boost { namespace accumulators { struct fast {}; // OK to leave these tags empty struct accurate {}; template<> struct as_feature<tag::fubar(accurate)> { typedef tag::fubar type; }; template<> struct as_feature<tag::fubar(fast)> { typedef tag::fast_fubar type; }; }}
Once you have done this, users of your fubar accumulator can request
the tag::fubar(fast)
and tag::fubar(accurate)
features when defining their accumulator_set
s
and get the correct accumulator.
This section describes how to adapt third-party numeric types to work with the Accumulator Framework.
Rather than relying on the built-in operators, the Accumulators Framework
relies on functions and operator overloads defined in the Numeric
Operators Sub-Library for many of its numeric operations. This
is so that it is possible to assign non-standard meanings to arithmetic
operations. For instance, when calculating an average by dividing two
integers, the standard integer division behavior would be mathematically
incorrect for most statistical quantities. So rather than use x / y
, the Accumulators Framework uses
numeric::average(x, y)
,
which does floating-point division even if both x
and y
are integers.
Another example where the Numeric Operators Sub-Library is useful is
when a type does not define the operator overloads required to use it
for some statistical calculations. For instance, std::vector<>
does not overload any arithmetic
operators, yet it may be useful to use std::vector<>
as a sample or variate type.
The Numeric Operators Sub-Library defines the necessary operator overloads
in the boost::numeric::operators
namespace, which is brought
into scope by the Accumulators Framework with a using directive.
Numeric Function Objects and Tag Dispatching
How are the numeric function object defined by the Numeric Operators
Sub-Library made to work with types such as std::vector<>
? The free functions in the boost::numeric
namespace are implemented in
terms of the function objects in the boost::numeric::functional
namespace, so to make boost::numeric::average()
do something sensible with a std::vector<>
,
for instance, we'll need to partially specialize the boost::numeric::functional::average<>
function object.
The functional objects make use of a technique known as tag dispatching to select the proper implementation for the given operands. It works as follows:
namespace boost { namespace numeric { namespace functional { // Metafunction for looking up the tag associated with // a given numeric type T. template<typename T> struct tag { // by default, all types have void as a tag type typedef void type; }; // Forward declaration looks up the tag types of each operand template< typename Left , typename Right , typename LeftTag = typename tag<Left>::type , typename RightTag = typename tag<Right>::type > struct average; }}}
If you have some user-defined type MyDouble
for which you would like to customimze the behavior of numeric::average()
,
you would specialize numeric::functional::average<>
by first defining a tag type,
as shown below:
namespace boost { namespace numeric { namespace functional { // Tag type for MyDouble struct MyDoubleTag {}; // Specialize tag<> for MyDouble. // This only needs to be done once. template<> struct tag<MyDouble> { typedef MyDoubleTag type; }; // Specify how to divide a MyDouble by an integral count template<typename Left, typename Right> struct average<Left, Right, MyDoubleTag, void> { // Define the type of the result typedef ... result_type; result_type operator()(Left & left, Right & right) const { return ...; } }; }}}
Once you have done this, numeric::average()
will use your specialization of numeric::functional::average<>
when the first argument is a MyDouble
object. All of the function objects in the Numeric Operators Sub-Library
can be customized in a similar fashion.
In the following table, Acc
is the type of an accumulator, acc
and acc2
are objects of
type Acc
, and args
is the name of an argument pack
from the Boost.Parameter
library.
Table 1.2. Accumulator Requirements
Expression |
Return type |
Assertion / Note / Pre- / Post-condition |
---|---|---|
|
implementation defined |
The type returned by |
|
none |
Construct from an argument pack. |
|
none |
Post: |
|
unspecified |
|
|
unspecified |
|
|
|
In the following table, F
is the type of a feature and S
is some scalar type.
Table 1.3. Featue Requirements
Expression |
Return type |
Assertion / Note / Pre- / Post-condition |
---|---|---|
|
unspecified |
An MPL sequence of other features on which which |
|
|
|
|
unspecified |
An MPL Lambda Expression that returns the type of the accumulator that implements this feature when passed a sample type and a weight type. |
The Statistical Accumulators Library defines accumulators for incremental statistial computations. It is built on top of The Accumulator Framework.
The count
feature is a
simple counter that tracks the number of samples pushed into the accumulator
set.
std::size_t
none
none
none
none
none
O(1)
O(1)
Header
#include <boost/accumulators/statistics/count.hpp
>
Example
accumulator_set<int, features<tag::count> > acc; acc(0); acc(0); acc(0); assert(3 == count(acc));
See also
The covariance
feature
is an iterative Monte Carlo estimator for the covariance. It is specified
as tag::covariance<
.
variate-type
, variate-tag
>
numeric::functional::outer_product< numeric::functional::average<sample-type
, std::size_t>::result_type , numeric::functional::average<variate-type
, std::size_t>::result_type >::result_type
count
mean
mean_of_variates<
variate-type
, variate-tag
>
abstract_covariance
none
variate-tag
none
TODO
O(1)
Headers
#include <boost/accumulators/statistics/covariance.hpp
> #include <boost/accumulators/statistics/variates/covariate.hpp
>
Example
accumulator_set<double, stats<tag::covariance<double, tag::covariate1> > > acc; acc(1., covariate1 = 2.); acc(1., covariate1 = 4.); acc(2., covariate1 = 3.); acc(6., covariate1 = 1.); assert(covariance(acc) == -1.75);
See also
The tag::density
feature returns a histogram of
the sample distribution. For more implementation details, see density_impl
.
iterator_range< std::vector< std::pair< numeric::functional::average<sample-type
, std::size_t>::result_type , numeric::functional::average<sample-type
, std::size_t>::result_type > >::iterator >
count
min
max
none
density::cache_size
density::num_bins
none
none
TODO
O(N), when N is density::num_bins
Header
#include <boost/accumulators/statistics/density.hpp
>
Note
Results from the density
accumulator can only be extracted after the number of samples meets or
exceeds the cache size.
See also
The error_of<mean>
feature calculates the error of the mean feature. It is equal to sqrt(variance /
(count
- 1))
.
numeric::functional::average<sample-type
, std::size_t>::result_type
count
variance
error_of<immediate_mean>
none
none
none
TODO
O(1)
Header
#include <boost/accumulators/statistics/error_of.hpp
> #include <boost/accumulators/statistics/error_of_mean.hpp
>
Example
accumulator_set<double, stats<tag::error_of<tag::mean> > > acc; acc(1.1); acc(1.2); acc(1.3); assert(0.057735 == error_of<tag::mean>(acc));
See also
Multiple quantile estimation with the extended P^2
algorithm.
For further details, see extended_p_square_impl
.
boost::iterator_range<
implementation-defined
>
count
none
tag::extended_p_square::probabilities
none
none
TODO
O(1)
Header
#include <boost/accumulators/statistics/extended_p_square.hpp
>
Example
boost::array<double> probs = {0.001,0.01,0.1,0.25,0.5,0.75,0.9,0.99,0.999}; accumulator_set<double, stats<tag::extended_p_square> > acc(tag::extended_p_square::probabilities = probs); boost::lagged_fibonacci607 rng; // a random number generator for (int i=0; i<10000; ++i) acc(rng()); BOOST_CHECK_CLOSE(extended_p_square(acc)[0], probs[0], 25); BOOST_CHECK_CLOSE(extended_p_square(acc)[1], probs[1], 10); BOOST_CHECK_CLOSE(extended_p_square(acc)[2], probs[2], 5); for (std::size_t i=3; i < probs.size(); ++i) { BOOST_CHECK_CLOSE(extended_p_square(acc)[i], probs[i], 2); }
See also
Quantile estimation using the extended P^2
algorithm
for weighted and unweighted samples. By default, the calculation is linear
and unweighted, but quadratic and weighted variants are also provided.
For further implementation details, see extended_p_square_quantile_impl
.
All the variants share the tag::quantile
feature and can be extracted using the quantile()
extractor.
numeric::functional::average<sample-type
, std::size_t>::result_type
weighted variants depend on weighted_extended_p_square
unweighted variants depend on extended_p_square
extended_p_square_quantile_quadratic
weighted_extended_p_square_quantile
weighted_extended_p_square_quantile_quadratic
tag::extended_p_square::probabilities
weight
for the weighted
variants
quantile_probability
TODO
O(N) where N is the count of probabilities.
Header
#include <boost/accumulators/statistics/extended_p_square_quantile.hpp
>
Example
typedef accumulator_set<double, stats<tag::extended_p_square_quantile> > accumulator_t; typedef accumulator_set<double, stats<tag::weighted_extended_p_square_quantile>, double > accumulator_t_weighted; typedef accumulator_set<double, stats<tag::extended_p_square_quantile(quadratic)> > accumulator_t_quadratic; typedef accumulator_set<double, stats<tag::weighted_extended_p_square_quantile(quadratic)>, double > accumulator_t_weighted_quadratic; // tolerance double epsilon = 1; // a random number generator boost::lagged_fibonacci607 rng; boost::array<double> probs = { 0.990, 0.991, 0.992, 0.993, 0.994, 0.995, 0.996, 0.997, 0.998, 0.999 }; accumulator_t acc(extended_p_square_probabilities = probs); accumulator_t_weighted acc_weighted(extended_p_square_probabilities = probs); accumulator_t_quadratic acc2(extended_p_square_probabilities = probs); accumulator_t_weighted_quadratic acc_weighted2(extended_p_square_probabilities = probs); for (int i=0; i<10000; ++i) { double sample = rng(); acc(sample); acc2(sample); acc_weighted(sample, weight = 1.); acc_weighted2(sample, weight = 1.); } for (std::size_t i = 0; i < probs.size() - 1; ++i) { BOOST_CHECK_CLOSE( quantile(acc, quantile_probability = 0.99025 + i*0.001) , 0.99025 + i*0.001 , epsilon ); BOOST_CHECK_CLOSE( quantile(acc2, quantile_probability = 0.99025 + i*0.001) , 0.99025 + i*0.001 , epsilon ); BOOST_CHECK_CLOSE( quantile(acc_weighted, quantile_probability = 0.99025 + i*0.001) , 0.99025 + i*0.001 , epsilon ); BOOST_CHECK_CLOSE( quantile(acc_weighted2, quantile_probability = 0.99025 + i*0.001) , 0.99025 + i*0.001 , epsilon ); }
See also
The kurtosis of a sample distribution is defined as the ratio of the 4th
central moment and the square of the 2nd central moment (the variance)
of the samples, minus 3. The term -3
is added in order
to ensure that the normal distribution has zero kurtosis. For more implementation
details, see kurtosis_impl
numeric::functional::average<sample-type
,sample-type
>::result_type
mean
moment<2>
moment<3>
moment<4>
none
none
none
none
O(1)
O(1)
Header
#include <boost/accumulators/statistics/kurtosis.hpp
>
Example
accumulator_set<int, stats<tag::kurtosis > > acc; acc(2); acc(7); acc(4); acc(9); acc(3); BOOST_CHECK_EQUAL( mean(acc), 5 ); BOOST_CHECK_EQUAL( accumulators::moment<2>(acc), 159./5. ); BOOST_CHECK_EQUAL( accumulators::moment<3>(acc), 1171./5. ); BOOST_CHECK_EQUAL( accumulators::moment<4>(acc), 1863 ); BOOST_CHECK_CLOSE( kurtosis(acc), -1.39965397924, 1e-6 );
See also
Calculates the maximum value of all the samples.
sample-type
none
none
none
none
none
O(1)
O(1)
Header
#include <boost/accumulators/statistics/max.hpp
>
Example
accumulator_set<int, stats<tag::max> > acc; acc(1); BOOST_CHECK_EQUAL(1, (max)(acc)); acc(0); BOOST_CHECK_EQUAL(1, (max)(acc)); acc(2); BOOST_CHECK_EQUAL(2, (max)(acc));
See also
Calculates the mean of samples, weights or variates. The calculation is
either lazy (in the result extractor), or immediate (in the accumulator).
The lazy implementation is the default. For more implementation details,
see mean_impl
or. immediate_mean_impl
For samples, numeric::functional::average<
sample-type
, std::size_t>::result_type
For weights,
numeric::functional::average<
weight-type
, std::size_t>::result_type
For variates, numeric::functional::average<
variate-type
, std::size_t>::result_type
count
The
lazy mean of samples depends on sum
The lazy mean of weights depends on sum_of_weights
The lazy mean of variates depends on sum_of_variates<>
mean_of_weights
mean_of_variates<
variate-type
, variate-tag
>
immediate_mean
immediate_mean_of_weights
immediate_mean_of_variates<
variate-type
, variate-tag
>
none
none
none
O(1)
O(1)
Header
#include <boost/accumulators/statistics/mean.hpp
>
Example
accumulator_set< int , stats< tag::mean , tag::mean_of_weights , tag::mean_of_variates<int, tag::covariate1> > , int > acc; acc(1, weight = 2, covariate1 = 3); BOOST_CHECK_CLOSE(1., mean(acc), 1e-5); BOOST_CHECK_EQUAL(1u, count(acc)); BOOST_CHECK_EQUAL(2, sum(acc)); BOOST_CHECK_CLOSE(2., mean_of_weights(acc), 1e-5); BOOST_CHECK_CLOSE(3., (accumulators::mean_of_variates<int, tag::covariate1>(acc)), 1e-5); acc(0, weight = 4, covariate1 = 4); BOOST_CHECK_CLOSE(0.33333333333333333, mean(acc), 1e-5); BOOST_CHECK_EQUAL(2u, count(acc)); BOOST_CHECK_EQUAL(2, sum(acc)); BOOST_CHECK_CLOSE(3., mean_of_weights(acc), 1e-5); BOOST_CHECK_CLOSE(3.5, (accumulators::mean_of_variates<int, tag::covariate1>(acc)), 1e-5); acc(2, weight = 9, covariate1 = 8); BOOST_CHECK_CLOSE(1.33333333333333333, mean(acc), 1e-5); BOOST_CHECK_EQUAL(3u, count(acc)); BOOST_CHECK_EQUAL(20, sum(acc)); BOOST_CHECK_CLOSE(5., mean_of_weights(acc), 1e-5); BOOST_CHECK_CLOSE(5., (accumulators::mean_of_variates<int, tag::covariate1>(acc)), 1e-5); accumulator_set< int , stats< tag::mean(immediate) , tag::mean_of_weights(immediate) , tag::mean_of_variates<int, tag::covariate1>(immediate) > , int > acc2; acc2(1, weight = 2, covariate1 = 3); BOOST_CHECK_CLOSE(1., mean(acc2), 1e-5); BOOST_CHECK_EQUAL(1u, count(acc2)); BOOST_CHECK_CLOSE(2., mean_of_weights(acc2), 1e-5); BOOST_CHECK_CLOSE(3., (accumulators::mean_of_variates<int, tag::covariate1>(acc2)), 1e-5); acc2(0, weight = 4, covariate1 = 4); BOOST_CHECK_CLOSE(0.33333333333333333, mean(acc2), 1e-5); BOOST_CHECK_EQUAL(2u, count(acc2)); BOOST_CHECK_CLOSE(3., mean_of_weights(acc2), 1e-5); BOOST_CHECK_CLOSE(3.5, (accumulators::mean_of_variates<int, tag::covariate1>(acc2)), 1e-5); acc2(2, weight = 9, covariate1 = 8); BOOST_CHECK_CLOSE(1.33333333333333333, mean(acc2), 1e-5); BOOST_CHECK_EQUAL(3u, count(acc2)); BOOST_CHECK_CLOSE(5., mean_of_weights(acc2), 1e-5); BOOST_CHECK_CLOSE(5., (accumulators::mean_of_variates<int, tag::covariate1>(acc2)), 1e-5);
See also
Median estimation based on the P^2
quantile estimator,
the density estimator, or the P^2
cumulative distribution
estimator. For more implementation details, see median_impl
,
with_density_median_impl
,
and with_p_square_cumulative_distribution_median_impl
.
The three median accumulators all satisfy the tag::median
feature, and can all be extracted with the median()
extractor.
numeric::functional::average<sample-type
, std::size_t>::result_type
median
depends on
p_square_quantile_for_median
with_density_median
depends on count
and density
with_p_square_cumulative_distribution_median
depends on p_square_cumulative_distribution
with_density_median
with_p_square_cumulative_distribution_median
with_density_median
requires tag::density::cache_size
and tag::density::num_bins
with_p_square_cumulative_distribution_median
requires tag::p_square_cumulative_distribution::num_cells
none
none
TODO
TODO
Header
#include <boost/accumulators/statistics/median.hpp
>
Example
// two random number generators double mu = 1.; boost::lagged_fibonacci607 rng; boost::normal_distribution<> mean_sigma(mu,1); boost::variate_generator<boost::lagged_fibonacci607&, boost::normal_distribution<> > normal(rng, mean_sigma); accumulator_set<double, stats<tag::median(with_p_square_quantile) > > acc; accumulator_set<double, stats<tag::median(with_density) > > acc_dens( density_cache_size = 10000, density_num_bins = 1000 ); accumulator_set<double, stats<tag::median(with_p_square_cumulative_distribution) > > acc_cdist( p_square_cumulative_distribution_num_cells = 100 ); for (std::size_t i=0; i<100000; ++i) { double sample = normal(); acc(sample); acc_dens(sample); acc_cdist(sample); } BOOST_CHECK_CLOSE(1., median(acc), 1.); BOOST_CHECK_CLOSE(1., median(acc_dens), 1.); BOOST_CHECK_CLOSE(1., median(acc_cdist), 3.);
See also
Calculates the minimum value of all the samples.
sample-type
none
none
none
none
none
O(1)
O(1)
Header
#include <boost/accumulators/statistics/min.hpp
>
Example
accumulator_set<int, stats<tag::min> > acc; acc(1); BOOST_CHECK_EQUAL(1, (min)(acc)); acc(0); BOOST_CHECK_EQUAL(0, (min)(acc)); acc(2); BOOST_CHECK_EQUAL(0, (min)(acc));
See also
Calculates the N-th moment of the samples, which is defined as the sum of the N-th power of the samples over the count of samples.
numeric::functional::average<sample-type
, std::size_t>::result_type
count
none
none
none
none
O(1)
O(1)
Header
#include <boost/accumulators/statistics/moment.hpp
>
Example
accumulator_set<int, stats<tag::moment<2> > > acc1; acc1(2); // 4 acc1(4); // 16 acc1(5); // + 25 // = 45 / 3 = 15 BOOST_CHECK_CLOSE(15., accumulators::moment<2>(acc1), 1e-5); accumulator_set<int, stats<tag::moment<5> > > acc2; acc2(2); // 32 acc2(3); // 243 acc2(4); // 1024 acc2(5); // + 3125 // = 4424 / 4 = 1106 BOOST_CHECK_CLOSE(1106., accumulators::moment<5>(acc2), 1e-5);
See also
Histogram calculation of the cumulative distribution with the P^2
algorithm. For more implementation details, see p_square_cumulative_distribution_impl
iterator_range< std::vector< std::pair< numeric::functional::average<sample-type
, std::size_t>::result_type , numeric::functional::average<sample-type
, std::size_t>::result_type > >::iterator >
count
none
tag::p_square_cumulative_distribution::num_cells
none
none
TODO
O(N) where N is num_cells
Header
#include <boost/accumulators/statistics/p_square_cumulative_distribution.hpp
>
Example
// tolerance in % double epsilon = 3; typedef accumulator_set<double, stats<tag::p_square_cumulative_distribution> > accumulator_t; accumulator_t acc(tag::p_square_cumulative_distribution::num_cells = 100); // two random number generators boost::lagged_fibonacci607 rng; boost::normal_distribution<> mean_sigma(0,1); boost::variate_generator<boost::lagged_fibonacci607&, boost::normal_distribution<> > normal(rng, mean_sigma); for (std::size_t i=0; i<100000; ++i) { acc(normal()); } typedef iterator_range<std::vector<std::pair<double, double> >::iterator > histogram_type; histogram_type histogram = p_square_cumulative_distribution(acc); for (std::size_t i = 0; i < histogram.size(); ++i) { // problem with small results: epsilon is relative (in percent), not absolute! if ( histogram[i].second > 0.001 ) BOOST_CHECK_CLOSE( 0.5 * (1.0 + erf( histogram[i].first / sqrt(2.0) )), histogram[i].second, epsilon ); }
See also
Single quantile estimation with the P^2
algorithm. For
more implementation details, see p_square_quantile_impl
numeric::functional::average<sample-type
, std::size_t>::result_type
count
p_square_quantile_for_median
quantile_probability
,
which defaults to 0.5
.
(Note: for p_square_quantile_for_median
,
the quantile_probability
parameter is ignored and is always 0.5
.)
none
none
TODO
O(1)
Header
#include <boost/accumulators/statistics/p_square_quantile.hpp
>
Example
typedef accumulator_set<double, stats<tag::p_square_quantile> > accumulator_t; // tolerance in % double epsilon = 1; // a random number generator boost::lagged_fibonacci607 rng; accumulator_t acc0(quantile_probability = 0.001); accumulator_t acc1(quantile_probability = 0.01 ); accumulator_t acc2(quantile_probability = 0.1 ); accumulator_t acc3(quantile_probability = 0.25 ); accumulator_t acc4(quantile_probability = 0.5 ); accumulator_t acc5(quantile_probability = 0.75 ); accumulator_t acc6(quantile_probability = 0.9 ); accumulator_t acc7(quantile_probability = 0.99 ); accumulator_t acc8(quantile_probability = 0.999); for (int i=0; i<100000; ++i) { double sample = rng(); acc0(sample); acc1(sample); acc2(sample); acc3(sample); acc4(sample); acc5(sample); acc6(sample); acc7(sample); acc8(sample); } BOOST_CHECK_CLOSE( p_square_quantile(acc0), 0.001, 15*epsilon ); BOOST_CHECK_CLOSE( p_square_quantile(acc1), 0.01 , 5*epsilon ); BOOST_CHECK_CLOSE( p_square_quantile(acc2), 0.1 , epsilon ); BOOST_CHECK_CLOSE( p_square_quantile(acc3), 0.25 , epsilon ); BOOST_CHECK_CLOSE( p_square_quantile(acc4), 0.5 , epsilon ); BOOST_CHECK_CLOSE( p_square_quantile(acc5), 0.75 , epsilon ); BOOST_CHECK_CLOSE( p_square_quantile(acc6), 0.9 , epsilon ); BOOST_CHECK_CLOSE( p_square_quantile(acc7), 0.99 , epsilon ); BOOST_CHECK_CLOSE( p_square_quantile(acc8), 0.999, epsilon );
See also
Peaks Over Threshold method for quantile and tail mean estimation. For
implementation details, see peaks_over_threshold_impl
and peaks_over_threshold_prob_impl
.
Both tag::peaks_over_threshold
and tag::peaks_over_threshold_prob<>
satisfy the tag::abstract_peaks_over_threshold
feature,
and can be extracted with the peaks_over_threshold()
extractor. The result is a 3-tuple representing
the fit parameters u_bar
,
beta_bar
and xi_hat
.
boost::tuple< numeric::functional::average<sample-type
, std::size_t>::result_type // u_bar , numeric::functional::average<sample-type
, std::size_t>::result_type // beta_bar , numeric::functional::average<sample-type
, std::size_t>::result_type // xi_hat >
count
In addtion,
tag::peaks_over_threshold_prob<>
depends on tail<
left-or-right
>
peaks_over_threshold_prob<
left-or-right
>
tag::peaks_over_threshold::threshold_value
tag::peaks_over_threshold_prob::threshold_probability
tag::tail<
left-or-right
>::cache_size
none
none
TODO
TODO
Header
#include <boost/accumulators/statistics/peaks_over_threshold.hpp
>
Example
See example for pot_quantile
.
See also
Quantile estimation based on Peaks over Threshold method (for both left
and right tails). For implementation details, see pot_quantile_impl
.
Both tag::pot_quantile<
and left-or-right
>tag::pot_quantile_prob<
satisfy the left-or-right
>tag::quantile
feature and can be extracted
using the quantile()
extractor.
numeric::functional::average<sample-type
, std::size_t>::result_type
pot_quantile<
depends on left-or-right
>peaks_over_threshold<
left-or-right
>
pot_quantile_prob<
depends on left-or-right
>peaks_over_threshold_prob<
left-or-right
>
pot_quantile_prob<
left-or-right
>
tag::peaks_over_threshold::threshold_value
tag::peaks_over_threshold_prob::threshold_probability
tag::tail<
left-or-right
>::cache_size
none
quantile_probability
TODO
TODO
Header
#include <boost/accumulators/statistics/pot_quantile.hpp
>
Example
// tolerance in % double epsilon = 1.; double alpha = 0.999; double threshold_probability = 0.99; double threshold = 3.; // two random number generators boost::lagged_fibonacci607 rng; boost::normal_distribution<> mean_sigma(0,1); boost::exponential_distribution<> lambda(1); boost::variate_generator<boost::lagged_fibonacci607&, boost::normal_distribution<> > normal(rng, mean_sigma); boost::variate_generator<boost::lagged_fibonacci607&, boost::exponential_distribution<> > exponential(rng, lambda); accumulator_set<double, stats<tag::pot_quantile<right>(with_threshold_value)> > acc1( tag::peaks_over_threshold::threshold_value = threshold ); accumulator_set<double, stats<tag::pot_quantile<right>(with_threshold_probability)> > acc2( tag::tail<right>::cache_size = 2000 , tag::peaks_over_threshold_prob::threshold_probability = threshold_probability ); threshold_probability = 0.995; threshold = 5.; accumulator_set<double, stats<tag::pot_quantile<right>(with_threshold_value)> > acc3( tag::peaks_over_threshold::threshold_value = threshold ); accumulator_set<double, stats<tag::pot_quantile<right>(with_threshold_probability)> > acc4( tag::tail<right>::cache_size = 2000 , tag::peaks_over_threshold_prob::threshold_probability = threshold_probability ); for (std::size_t i = 0; i < 100000; ++i) { double sample = normal(); acc1(sample); acc2(sample); } for (std::size_t i = 0; i < 100000; ++i) { double sample = exponential(); acc3(sample); acc4(sample); } BOOST_CHECK_CLOSE( quantile(acc1, quantile_probability = alpha), 3.090232, epsilon ); BOOST_CHECK_CLOSE( quantile(acc2, quantile_probability = alpha), 3.090232, epsilon ); BOOST_CHECK_CLOSE( quantile(acc3, quantile_probability = alpha), 6.908, epsilon ); BOOST_CHECK_CLOSE( quantile(acc4, quantile_probability = alpha), 6.908, epsilon );
See also
Estimation of the (coherent) tail mean based on the peaks over threshold
method (for both left and right tails). For inplementation details, see
pot_tail_mean_impl
.
Both tag::pot_tail_mean<
and left-or-right
>tag::pot_tail_mean_prob<
satisfy the left-or-right
>tag::tail_mean
feature and can be extracted
using the tail_mean()
extractor.
numeric::functional::average<sample-type
, std::size_t>::result_type
pot_tail_mean<
depends on left-or-right
>peaks_over_threshold<
and left-or-right
>pot_quantile<
left-or-right
>
pot_tail_mean_prob<
depends on left-or-right
>peaks_over_threshold_prob<
and left-or-right
>pot_quantile_prob<
left-or-right
>
pot_tail_mean_prob<
left-or-right
>
tag::peaks_over_threshold::threshold_value
tag::peaks_over_threshold_prob::threshold_probability
tag::tail<
left-or-right
>::cache_size
none
quantile_probability
TODO
TODO
Header
#include <boost/accumulators/statistics/pot_tail_mean.hpp
>
Example
// TODO
See also
The rolling count is the current number of elements in the rolling window.
std::size_t
rolling_window_plus1
none
tag::rolling_window::window_size
none
none
O(1)
O(1)
Header
#include <boost/accumulators/statistics/rolling_count.hpp
>
Example
accumulator_set<int, stats<tag::rolling_count> > acc(tag::rolling_window::window_size = 3); BOOST_CHECK_EQUAL(0u, rolling_count(acc)); acc(1); BOOST_CHECK_EQUAL(1u, rolling_count(acc)); acc(1); BOOST_CHECK_EQUAL(2u, rolling_count(acc)); acc(1); BOOST_CHECK_EQUAL(3u, rolling_count(acc)); acc(1); BOOST_CHECK_EQUAL(3u, rolling_count(acc)); acc(1); BOOST_CHECK_EQUAL(3u, rolling_count(acc));
See also
The rolling sum is the sum of the last N samples.
sample-type
rolling_window_plus1
none
tag::rolling_window::window_size
none
none
O(1)
O(1)
Header
#include <boost/accumulators/statistics/rolling_sum.hpp
>
Example
accumulator_set<int, stats<tag::rolling_sum> > acc(tag::rolling_window::window_size = 3); BOOST_CHECK_EQUAL(0, rolling_sum(acc)); acc(1); BOOST_CHECK_EQUAL(1, rolling_sum(acc)); acc(2); BOOST_CHECK_EQUAL(3, rolling_sum(acc)); acc(3); BOOST_CHECK_EQUAL(6, rolling_sum(acc)); acc(4); BOOST_CHECK_EQUAL(9, rolling_sum(acc)); acc(5); BOOST_CHECK_EQUAL(12, rolling_sum(acc));
See also
The rolling mean is the mean over the last N samples. It is computed by dividing the rolling sum by the rolling count.
numeric::functional::average<sample-type
, std::size_t>::result_type
rolling_sum
rolling_count
none
tag::rolling_window::window_size
none
none
O(1)
O(1)
Header
#include <boost/accumulators/statistics/rolling_mean.hpp
>
Example
accumulator_set<int, stats<tag::rolling_mean> > acc(tag::rolling_window::window_size = 5); acc(1); acc(2); acc(3); BOOST_CHECK_CLOSE( rolling_mean(acc), 2.0, 1e-6 ); acc(4); acc(5); acc(6); acc(7); BOOST_CHECK_CLOSE( rolling_mean(acc), 5.0, 1e-6 );
See also
The skewness of a sample distribution is defined as the ratio of the 3rd
central moment and the 3/2
-th power of the 2nd central
moment (the variance) of the sampless 3. For implementation details, see
skewness_impl
.
numeric::functional::average<sample-type
,sample-type
>::result_type
mean
moment<2>
moment<3>
none
none
none
none
O(1)
O(1)
Header
#include <boost/accumulators/statistics/skewness.hpp
>
Example
accumulator_set<int, stats<tag::skewness > > acc2; acc2(2); acc2(7); acc2(4); acc2(9); acc2(3); BOOST_CHECK_EQUAL( mean(acc2), 5 ); BOOST_CHECK_EQUAL( accumulators::moment<2>(acc2), 159./5. ); BOOST_CHECK_EQUAL( accumulators::moment<3>(acc2), 1171./5. ); BOOST_CHECK_CLOSE( skewness(acc2), 0.406040288214, 1e-6 );
See also
For summing the samples, weights or variates. The default implementation uses the standard sum operation, but variants using the Kahan summation algorithm are also provided.
for summing samples sample-type
for summing
weights weight-type
for summing variates
variate-type
none
tag::sum
tag::sum_of_weights
tag::sum_of_variates<
variate-type
, variate-tag
>
tag::sum_kahan
(a.k.a. tag::sum(kahan)
)
tag::sum_of_weights_kahan
(a.k.a. tag::sum_of_weights(kahan)
)
tag::sum_of_variates_kahan<
variate-type
, variate-tag
>
none
weight
for summing
weights
for summing variates
variate-tag
none
O(1). Note that the Kahan sum performs four floating-point sum operations per accumulated value, whereas the naive sum performs only one.
O(1)
Header
#include <boost/accumulators/statistics/sum.hpp
> #include <boost/accumulators/statistics/sum_kahan.hpp
>
Example
accumulator_set< int , stats< tag::sum , tag::sum_of_weights , tag::sum_of_variates<int, tag::covariate1> > , int > acc; acc(1, weight = 2, covariate1 = 3); BOOST_CHECK_EQUAL(2, sum(acc)); // weighted sample = 1 * 2 BOOST_CHECK_EQUAL(2, sum_of_weights(acc)); BOOST_CHECK_EQUAL(3, sum_of_variates(acc)); acc(2, weight = 4, covariate1 = 6); BOOST_CHECK_EQUAL(10, sum(acc)); // weighted sample = 2 * 4 BOOST_CHECK_EQUAL(6, sum_of_weights(acc)); BOOST_CHECK_EQUAL(9, sum_of_variates(acc)); acc(3, weight = 6, covariate1 = 9); BOOST_CHECK_EQUAL(28, sum(acc)); // weighted sample = 3 * 6 BOOST_CHECK_EQUAL(12, sum_of_weights(acc)); BOOST_CHECK_EQUAL(18, sum_of_variates(acc)); // demonstrate Kahan summation accumulator_set<float, stats<tag::sum_kahan> > acc; BOOST_CHECK_EQUAL(0.0f, sum_kahan(acc)); for (size_t i = 0; i < 1e6; ++i) { acc(1e-6f); } BOOST_CHECK_EQUAL(1.0f, sum_kahan(acc));
See also
Tracks the largest or smallest N
values. tag::tail<right>
tracks the largest N
, and tag::tail<left>
tracks the smallest. The parameter
N
is specified with the tag::tail<
initialization parameter.
For implementation details, see left-or-right
>::cache_sizetail_impl
.
Both tag::tail<left>
and tag::tail<right>
satisfy the tag::abstract_tail
feature and can be extracted
with the tail()
extractor.
boost::iterator_range<
boost::reverse_iterator<
boost::permutation_iterator<
std::vector<sample-type
>::const_iterator // samples
, std::vector<std::size_t>::iterator // indices
>
>
>
none
abstract_tail
tag::tail<
left-or-right
>::cache_size
none
none
O(log N), where N is the cache size
O(N log N), where N is the cache size
Header
#include <boost/accumulators/statistics/tail.hpp
>
Example
See the Example for tail_variate
.
See also
Estimation of the coherent tail mean based on order statistics (for both
left and right tails). The left coherent tail mean feature is tag::coherent_tail_mean<left>
,
and the right choherent tail mean feature is tag::coherent_tail_mean<right>
. They both share the tag::tail_mean
feature and can be extracted
with the tail_mean()
extractor. For more implementation details, see coherent_tail_mean_impl
numeric::functional::average<sample-type
, std::size_t>::result_type
count
quantile
non_coherent_tail_mean<
left-or-right
>
none
tag::tail<
left-or-right
>::cache_size
none
quantile_probability
O(log N), where N is the cache size
O(N log N), where N is the cache size
Header
#include <boost/accumulators/statistics/tail_mean.hpp
>
Example
See the example for non_coherent_tail_mean
.
See also
Estimation of the (non-coherent) tail mean based on order statistics (for
both left and right tails). The left non-coherent tail mean feature is
tag::non_coherent_tail_mean<left>
,
and the right non-choherent tail mean feature is tag::non_coherent_tail_mean<right>
. They both share the tag::abstract_non_coherent_tail_mean
feature
and can be extracted with the non_coherent_tail_mean()
extractor. For more implementation details,
see non_coherent_tail_mean_impl
numeric::functional::average<sample-type
, std::size_t>::result_type
count
tail<
left-or-right
>
abstract_non_coherent_tail_mean
tag::tail<
left-or-right
>::cache_size
none
quantile_probability
O(log N), where N is the cache size
O(N log N), where N is the cache size
Header
#include <boost/accumulators/statistics/tail_mean.hpp
>
Example
// tolerance in % double epsilon = 1; std::size_t n = 100000; // number of MC steps std::size_t c = 10000; // cache size typedef accumulator_set<double, stats<tag::non_coherent_tail_mean<right>, tag::tail_quantile<right> > > accumulator_t_right1; typedef accumulator_set<double, stats<tag::non_coherent_tail_mean<left>, tag::tail_quantile<left> > > accumulator_t_left1; typedef accumulator_set<double, stats<tag::coherent_tail_mean<right>, tag::tail_quantile<right> > > accumulator_t_right2; typedef accumulator_set<double, stats<tag::coherent_tail_mean<left>, tag::tail_quantile<left> > > accumulator_t_left2; accumulator_t_right1 acc0( right_tail_cache_size = c ); accumulator_t_left1 acc1( left_tail_cache_size = c ); accumulator_t_right2 acc2( right_tail_cache_size = c ); accumulator_t_left2 acc3( left_tail_cache_size = c ); // a random number generator boost::lagged_fibonacci607 rng; for (std::size_t i = 0; i < n; ++i) { double sample = rng(); acc0(sample); acc1(sample); acc2(sample); acc3(sample); } // check uniform distribution BOOST_CHECK_CLOSE( non_coherent_tail_mean(acc0, quantile_probability = 0.95), 0.975, epsilon ); BOOST_CHECK_CLOSE( non_coherent_tail_mean(acc0, quantile_probability = 0.975), 0.9875, epsilon ); BOOST_CHECK_CLOSE( non_coherent_tail_mean(acc0, quantile_probability = 0.99), 0.995, epsilon ); BOOST_CHECK_CLOSE( non_coherent_tail_mean(acc0, quantile_probability = 0.999), 0.9995, epsilon ); BOOST_CHECK_CLOSE( non_coherent_tail_mean(acc1, quantile_probability = 0.05), 0.025, epsilon ); BOOST_CHECK_CLOSE( non_coherent_tail_mean(acc1, quantile_probability = 0.025), 0.0125, epsilon ); BOOST_CHECK_CLOSE( non_coherent_tail_mean(acc1, quantile_probability = 0.01), 0.005, 5 ); BOOST_CHECK_CLOSE( non_coherent_tail_mean(acc1, quantile_probability = 0.001), 0.0005, 10 ); BOOST_CHECK_CLOSE( tail_mean(acc2, quantile_probability = 0.95), 0.975, epsilon ); BOOST_CHECK_CLOSE( tail_mean(acc2, quantile_probability = 0.975), 0.9875, epsilon ); BOOST_CHECK_CLOSE( tail_mean(acc2, quantile_probability = 0.99), 0.995, epsilon ); BOOST_CHECK_CLOSE( tail_mean(acc2, quantile_probability = 0.999), 0.9995, epsilon ); BOOST_CHECK_CLOSE( tail_mean(acc3, quantile_probability = 0.05), 0.025, epsilon ); BOOST_CHECK_CLOSE( tail_mean(acc3, quantile_probability = 0.025), 0.0125, epsilon ); BOOST_CHECK_CLOSE( tail_mean(acc3, quantile_probability = 0.01), 0.005, 5 ); BOOST_CHECK_CLOSE( tail_mean(acc3, quantile_probability = 0.001), 0.0005, 10 );
See also
Tail quantile estimation based on order statistics (for both left and right
tails). The left tail quantile feature is tag::tail_quantile<left>
, and the right tail quantile feature
is tag::tail_quantile<right>
.
They both share the tag::quantile
feature and can be extracted with the quantile()
extractor. For more implementation details,
see tail_quantile_impl
sample-type
count
tail<
left-or-right
>
none
tag::tail<
left-or-right
>::cache_size
none
quantile_probability
O(log N), where N is the cache size
O(N log N), where N is the cache size
Header
#include <boost/accumulators/statistics/tail_quantile.hpp
>
Example
// tolerance in % double epsilon = 1; std::size_t n = 100000; // number of MC steps std::size_t c = 10000; // cache size typedef accumulator_set<double, stats<tag::tail_quantile<right> > > accumulator_t_right; typedef accumulator_set<double, stats<tag::tail_quantile<left> > > accumulator_t_left; accumulator_t_right acc0( tag::tail<right>::cache_size = c ); accumulator_t_right acc1( tag::tail<right>::cache_size = c ); accumulator_t_left acc2( tag::tail<left>::cache_size = c ); accumulator_t_left acc3( tag::tail<left>::cache_size = c ); // two random number generators boost::lagged_fibonacci607 rng; boost::normal_distribution<> mean_sigma(0,1); boost::variate_generator<boost::lagged_fibonacci607&, boost::normal_distribution<> > normal(rng, mean_sigma); for (std::size_t i = 0; i < n; ++i) { double sample1 = rng(); double sample2 = normal(); acc0(sample1); acc1(sample2); acc2(sample1); acc3(sample2); } // check uniform distribution BOOST_CHECK_CLOSE( quantile(acc0, quantile_probability = 0.95 ), 0.95, epsilon ); BOOST_CHECK_CLOSE( quantile(acc0, quantile_probability = 0.975), 0.975, epsilon ); BOOST_CHECK_CLOSE( quantile(acc0, quantile_probability = 0.99 ), 0.99, epsilon ); BOOST_CHECK_CLOSE( quantile(acc0, quantile_probability = 0.999), 0.999, epsilon ); BOOST_CHECK_CLOSE( quantile(acc2, quantile_probability = 0.05 ), 0.05, 2 ); BOOST_CHECK_CLOSE( quantile(acc2, quantile_probability = 0.025), 0.025, 2 ); BOOST_CHECK_CLOSE( quantile(acc2, quantile_probability = 0.01 ), 0.01, 3 ); BOOST_CHECK_CLOSE( quantile(acc2, quantile_probability = 0.001), 0.001, 20 ); // check standard normal distribution BOOST_CHECK_CLOSE( quantile(acc1, quantile_probability = 0.975), 1.959963, epsilon ); BOOST_CHECK_CLOSE( quantile(acc1, quantile_probability = 0.999), 3.090232, epsilon ); BOOST_CHECK_CLOSE( quantile(acc3, quantile_probability = 0.025), -1.959963, epsilon ); BOOST_CHECK_CLOSE( quantile(acc3, quantile_probability = 0.001), -3.090232, epsilon );
See also
Tracks the covariates of largest or smallest N
samples.
tag::tail_variate<
tracks the covariate associated with
variate-type
, variate-tag
, right>variate-tag
for the largest N
, and tag::tail_variate<
for the smallest. The parameter variate-type
, variate-tag
,
left>N
is specified with
the tag::tail<
initialization parameter. For implementation details, see left-or-right
>::cache_sizetail_variate_impl
.
Both tag::tail_variate<
and variate-type
, variate-tag
, right>tag::tail_variate<
satisfy the variate-type
, variate-tag
,
left>tag::abstract_tail_variate
feature and can
be extracted with the tail_variate()
extractor.
boost::iterator_range<
boost::reverse_iterator<
boost::permutation_iterator<
std::vector<variate-type
>::const_iterator // variates
, std::vector<std::size_t>::iterator // indices
>
>
>
tail<
left-or-right
>
abstract_tail_variate
tag::tail<
left-or-right
>::cache_size
none
none
O(log N), where N is the cache size
O(N log N), where N is the cache size
Header
#include <boost/accumulators/statistics/tail_variate.hpp
>
Example
accumulator_set<int, stats<tag::tail_variate<int, tag::covariate1, right> > > acc( tag::tail<right>::cache_size = 4 ); acc(8, covariate1 = 3); CHECK_RANGE_EQUAL(tail(acc), {8}); CHECK_RANGE_EQUAL(tail_variate(acc), {3}); acc(16, covariate1 = 1); CHECK_RANGE_EQUAL(tail(acc), {16, 8}); CHECK_RANGE_EQUAL(tail_variate(acc), {1, 3}); acc(12, covariate1 = 4); CHECK_RANGE_EQUAL(tail(acc), {16, 12, 8}); CHECK_RANGE_EQUAL(tail_variate(acc), {1, 4, 3}); acc(24, covariate1 = 5); CHECK_RANGE_EQUAL(tail(acc), {24, 16, 12, 8}); CHECK_RANGE_EQUAL(tail_variate(acc), {5, 1, 4, 3}); acc(1, covariate1 = 9); CHECK_RANGE_EQUAL(tail(acc), {24, 16, 12, 8}); CHECK_RANGE_EQUAL(tail_variate(acc), {5, 1, 4, 3}); acc(9, covariate1 = 7); CHECK_RANGE_EQUAL(tail(acc), {24, 16, 12, 9}); CHECK_RANGE_EQUAL(tail_variate(acc), {5, 1, 4, 7});
See also
Estimation of the absolute and relative tail variate means (for both left
and right tails). The absolute tail variate means has the feature tag::absolute_tail_variate_means<
and the relative tail variate mean has the feature left-or-right
, variate-type
, variate-tag
>tag::relative_tail_variate_means<
. All absolute tail variate
mean features share the left-or-right
, variate-type
,
variate-tag
>tag::abstract_absolute_tail_variate_means
feature and can be extracted with the tail_variate_means()
extractor. All the relative tail variate
mean features share the tag::abstract_relative_tail_variate_means
feature and can be extracted with the relative_tail_variate_means()
extractor.
For more implementation details, see tail_variate_means_impl
boost::iterator_range<
std::vector<
numeric::functional::average<sample-type
, std::size_t>::result_type
>::iterator
>
non_coherent_tail_mean<
left-or-right
>
tail_variate<
variate-type
, variate-tag
, left-or-right
>
tag::absolute_tail_variate_means<
left-or-right
, variate-type
, variate-tag
>
tag::relative_tail_variate_means<
left-or-right
, variate-type
, variate-tag
>
tag::tail<
left-or-right
>::cache_size
none
quantile_probability
O(log N), where N is the cache size
O(N log N), where N is the cache size
Header
#include <boost/accumulators/statistics/tail_variate_means.hpp
>
Example
std::size_t c = 5; // cache size typedef double variate_type; typedef std::vector<variate_type> variate_set_type; typedef accumulator_set<double, stats< tag::tail_variate_means<right, variate_set_type, tag::covariate1>(relative)>, tag::tail<right> > accumulator_t1; typedef accumulator_set<double, stats< tag::tail_variate_means<right, variate_set_type, tag::covariate1>(absolute)>, tag::tail<right> > accumulator_t2; typedef accumulator_set<double, stats< tag::tail_variate_means<left, variate_set_type, tag::covariate1>(relative)>, tag::tail<left> > accumulator_t3; typedef accumulator_set<double, stats< tag::tail_variate_means<left, variate_set_type, tag::covariate1>(absolute)>, tag::tail<left> > accumulator_t4; accumulator_t1 acc1( right_tail_cache_size = c ); accumulator_t2 acc2( right_tail_cache_size = c ); accumulator_t3 acc3( left_tail_cache_size = c ); accumulator_t4 acc4( left_tail_cache_size = c ); variate_set_type cov1, cov2, cov3, cov4, cov5; double c1[] = { 10., 20., 30., 40. }; // 100 double c2[] = { 26., 4., 17., 3. }; // 50 double c3[] = { 46., 64., 40., 50. }; // 200 double c4[] = { 1., 3., 70., 6. }; // 80 double c5[] = { 2., 2., 2., 14. }; // 20 cov1.assign(c1, c1 + sizeof(c1)/sizeof(variate_type)); cov2.assign(c2, c2 + sizeof(c2)/sizeof(variate_type)); cov3.assign(c3, c3 + sizeof(c3)/sizeof(variate_type)); cov4.assign(c4, c4 + sizeof(c4)/sizeof(variate_type)); cov5.assign(c5, c5 + sizeof(c5)/sizeof(variate_type)); acc1(100., covariate1 = cov1); acc1( 50., covariate1 = cov2); acc1(200., covariate1 = cov3); acc1( 80., covariate1 = cov4); acc1( 20., covariate1 = cov5); acc2(100., covariate1 = cov1); acc2( 50., covariate1 = cov2); acc2(200., covariate1 = cov3); acc2( 80., covariate1 = cov4); acc2( 20., covariate1 = cov5); acc3(100., covariate1 = cov1); acc3( 50., covariate1 = cov2); acc3(200., covariate1 = cov3); acc3( 80., covariate1 = cov4); acc3( 20., covariate1 = cov5); acc4(100., covariate1 = cov1); acc4( 50., covariate1 = cov2); acc4(200., covariate1 = cov3); acc4( 80., covariate1 = cov4); acc4( 20., covariate1 = cov5); // check relative risk contributions BOOST_CHECK_EQUAL( *(relative_tail_variate_means(acc1, quantile_probability = 0.7).begin() ), 14./75. ); // (10 + 46) / 300 = 14/75 BOOST_CHECK_EQUAL( *(relative_tail_variate_means(acc1, quantile_probability = 0.7).begin() + 1), 7./25. ); // (20 + 64) / 300 = 7/25 BOOST_CHECK_EQUAL( *(relative_tail_variate_means(acc1, quantile_probability = 0.7).begin() + 2), 7./30. ); // (30 + 40) / 300 = 7/30 BOOST_CHECK_EQUAL( *(relative_tail_variate_means(acc1, quantile_probability = 0.7).begin() + 3), 3./10. ); // (40 + 50) / 300 = 3/10 BOOST_CHECK_EQUAL( *(relative_tail_variate_means(acc3, quantile_probability = 0.3).begin() ), 14./35. ); // (26 + 2) / 70 = 14/35 BOOST_CHECK_EQUAL( *(relative_tail_variate_means(acc3, quantile_probability = 0.3).begin() + 1), 3./35. ); // ( 4 + 2) / 70 = 3/35 BOOST_CHECK_EQUAL( *(relative_tail_variate_means(acc3, quantile_probability = 0.3).begin() + 2), 19./70. ); // (17 + 2) / 70 = 19/70 BOOST_CHECK_EQUAL( *(relative_tail_variate_means(acc3, quantile_probability = 0.3).begin() + 3), 17./70. ); // ( 3 + 14) / 70 = 17/70 // check absolute risk contributions BOOST_CHECK_EQUAL( *(tail_variate_means(acc2, quantile_probability = 0.7).begin() ), 28 ); // (10 + 46) / 2 = 28 BOOST_CHECK_EQUAL( *(tail_variate_means(acc2, quantile_probability = 0.7).begin() + 1), 42 ); // (20 + 64) / 2 = 42 BOOST_CHECK_EQUAL( *(tail_variate_means(acc2, quantile_probability = 0.7).begin() + 2), 35 ); // (30 + 40) / 2 = 35 BOOST_CHECK_EQUAL( *(tail_variate_means(acc2, quantile_probability = 0.7).begin() + 3), 45 ); // (40 + 50) / 2 = 45 BOOST_CHECK_EQUAL( *(tail_variate_means(acc4, quantile_probability = 0.3).begin() ), 14 ); // (26 + 2) / 2 = 14 BOOST_CHECK_EQUAL( *(tail_variate_means(acc4, quantile_probability = 0.3).begin() + 1), 3 ); // ( 4 + 2) / 2 = 3 BOOST_CHECK_EQUAL( *(tail_variate_means(acc4, quantile_probability = 0.3).begin() + 2),9.5 ); // (17 + 2) / 2 = 9.5 BOOST_CHECK_EQUAL( *(tail_variate_means(acc4, quantile_probability = 0.3).begin() + 3),8.5 ); // ( 3 + 14) / 2 = 8.5 // check relative risk contributions BOOST_CHECK_EQUAL( *(relative_tail_variate_means(acc1, quantile_probability = 0.9).begin() ), 23./100. ); // 46/200 = 23/100 BOOST_CHECK_EQUAL( *(relative_tail_variate_means(acc1, quantile_probability = 0.9).begin() + 1), 8./25. ); // 64/200 = 8/25 BOOST_CHECK_EQUAL( *(relative_tail_variate_means(acc1, quantile_probability = 0.9).begin() + 2), 1./5. ); // 40/200 = 1/5 BOOST_CHECK_EQUAL( *(relative_tail_variate_means(acc1, quantile_probability = 0.9).begin() + 3), 1./4. ); // 50/200 = 1/4 BOOST_CHECK_EQUAL( *(relative_tail_variate_means(acc3, quantile_probability = 0.1).begin() ), 1./10. ); // 2/ 20 = 1/10 BOOST_CHECK_EQUAL( *(relative_tail_variate_means(acc3, quantile_probability = 0.1).begin() + 1), 1./10. ); // 2/ 20 = 1/10 BOOST_CHECK_EQUAL( *(relative_tail_variate_means(acc3, quantile_probability = 0.1).begin() + 2), 1./10. ); // 2/ 20 = 1/10 BOOST_CHECK_EQUAL( *(relative_tail_variate_means(acc3, quantile_probability = 0.1).begin() + 3), 7./10. ); // 14/ 20 = 7/10 // check absolute risk contributions BOOST_CHECK_EQUAL( *(tail_variate_means(acc2, quantile_probability = 0.9).begin() ), 46 ); // 46 BOOST_CHECK_EQUAL( *(tail_variate_means(acc2, quantile_probability = 0.9).begin() + 1), 64 ); // 64 BOOST_CHECK_EQUAL( *(tail_variate_means(acc2, quantile_probability = 0.9).begin() + 2), 40 ); // 40 BOOST_CHECK_EQUAL( *(tail_variate_means(acc2, quantile_probability = 0.9).begin() + 3), 50 ); // 50 BOOST_CHECK_EQUAL( *(tail_variate_means(acc4, quantile_probability = 0.1).begin() ), 2 ); // 2 BOOST_CHECK_EQUAL( *(tail_variate_means(acc4, quantile_probability = 0.1).begin() + 1), 2 ); // 2 BOOST_CHECK_EQUAL( *(tail_variate_means(acc4, quantile_probability = 0.1).begin() + 2), 2 ); // 2 BOOST_CHECK_EQUAL( *(tail_variate_means(acc4, quantile_probability = 0.1).begin() + 3), 14 ); // 14
See also
Lazy or iterative calculation of the variance. The lazy calculation is
associated with the tag::lazy_variance
feature, and the iterative calculation with the tag::variance
feature. Both can be extracted using the tag::variance()
extractor. For more implementation details,
see lazy_variance_impl
and variance_impl
numeric::functional::average<sample-type
, std::size_t>::result_type
tag::lazy_variance
depends on tag::moment<2>
and tag::mean
tag::variance
depends on tag::count
and tag::immediate_mean
tag::lazy_variance
(a.k.a. tag::variance(lazy))
tag::variance
(a.k.a. tag::variance(immediate)
)
none
none
none
O(1)
O(1)
Header
#include <boost/accumulators/statistics/variance.hpp
>
Example
// lazy variance accumulator_set<int, stats<tag::variance(lazy)> > acc1; acc1(1); acc1(2); acc1(3); acc1(4); acc1(5); BOOST_CHECK_EQUAL(5u, count(acc1)); BOOST_CHECK_CLOSE(3., mean(acc1), 1e-5); BOOST_CHECK_CLOSE(11., accumulators::moment<2>(acc1), 1e-5); BOOST_CHECK_CLOSE(2., variance(acc1), 1e-5); // immediate variance accumulator_set<int, stats<tag::variance> > acc2; acc2(1); acc2(2); acc2(3); acc2(4); acc2(5); BOOST_CHECK_EQUAL(5u, count(acc2)); BOOST_CHECK_CLOSE(3., mean(acc2), 1e-5); BOOST_CHECK_CLOSE(2., variance(acc2), 1e-5);
See also
An iterative Monte Carlo estimator for the weighted covariance. The feature
is specified as tag::weighted_covariance<
and
is extracted with the variate-type
, variate-tag
>weighted_variate()
extractor. For more implementation details,
see weighted_covariance_impl
numeric::functional::outer_product< numeric::functional::multiplies<weight-type
, numeric::functional::average<sample-type
, std::size_t>::result_type >::result_type , numeric::functional::multiplies<weight-type
, numeric::functional::average<variate-type
, std::size_t>::result_type >::result_type >
count
sum_of_weights
weighted_mean
weighted_mean_of_variates<
variate-type
, variate-tag
>
abstract_weighted_covariance
none
weight
variate-tag
none
O(1)
O(1)
Header
#include <boost/accumulators/statistics/weighted_covariance.hpp
>
Example
accumulator_set<double, stats<tag::weighted_covariance<double, tag::covariate1> >, double > acc; acc(1., weight = 1.1, covariate1 = 2.); acc(1., weight = 2.2, covariate1 = 4.); acc(2., weight = 3.3, covariate1 = 3.); acc(6., weight = 4.4, covariate1 = 1.); double epsilon = 1e-6; BOOST_CHECK_CLOSE(weighted_covariance(acc), -2.39, epsilon);
See also
The tag::weighted_density
feature returns a histogram
of the weighted sample distribution. For more implementation details, see
weighted_density_impl
.
iterator_range< std::vector< std::pair< numeric::functional::average<weight-type
, std::size_t>::result_type , numeric::functional::average<weight-type
, std::size_t>::result_type > >::iterator >
count
sum_of_weights
min
max
none
tag::weighted_density::cache_size
tag::weighted_density::num_bins
weight
none
TODO
O(N), when N is weighted_density::num_bins
Header
#include <boost/accumulators/statistics/weighted_density.hpp
>
See also
Multiple quantile estimation with the extended P^2
algorithm
for weighted samples. For further details, see weighted_extended_p_square_impl
.
boost::iterator_range<
implementation-defined
>
count
sum_of_weights
none
tag::weighted_extended_p_square::probabilities
weight
none
TODO
O(1)
Header
#include <boost/accumulators/statistics/weighted_extended_p_square.hpp
>
Example
typedef accumulator_set<double, stats<tag::weighted_extended_p_square>, double> accumulator_t; // tolerance in % double epsilon = 1; // some random number generators double mu1 = -1.0; double mu2 = 1.0; boost::lagged_fibonacci607 rng; boost::normal_distribution<> mean_sigma1(mu1, 1); boost::normal_distribution<> mean_sigma2(mu2, 1); boost::variate_generator<boost::lagged_fibonacci607&, boost::normal_distribution<> > normal1(rng, mean_sigma1); boost::variate_generator<boost::lagged_fibonacci607&, boost::normal_distribution<> > normal2(rng, mean_sigma2); std::vector<double> probs_uniform, probs_normal1, probs_normal2, probs_normal_exact1, probs_normal_exact2; double p1[] = {/*0.001,*/ 0.01, 0.1, 0.5, 0.9, 0.99, 0.999}; probs_uniform.assign(p1, p1 + sizeof(p1) / sizeof(double)); double p2[] = {0.001, 0.025}; double p3[] = {0.975, 0.999}; probs_normal1.assign(p2, p2 + sizeof(p2) / sizeof(double)); probs_normal2.assign(p3, p3 + sizeof(p3) / sizeof(double)); double p4[] = {-3.090232, -1.959963}; double p5[] = {1.959963, 3.090232}; probs_normal_exact1.assign(p4, p4 + sizeof(p4) / sizeof(double)); probs_normal_exact2.assign(p5, p5 + sizeof(p5) / sizeof(double)); accumulator_t acc_uniform(tag::weighted_extended_p_square::probabilities = probs_uniform); accumulator_t acc_normal1(tag::weighted_extended_p_square::probabilities = probs_normal1); accumulator_t acc_normal2(tag::weighted_extended_p_square::probabilities = probs_normal2); for (std::size_t i = 0; i < 100000; ++i) { acc_uniform(rng(), weight = 1.); double sample1 = normal1(); double sample2 = normal2(); acc_normal1(sample1, weight = std::exp(-mu1 * (sample1 - 0.5 * mu1))); acc_normal2(sample2, weight = std::exp(-mu2 * (sample2 - 0.5 * mu2))); } // check for uniform distribution for (std::size_t i = 0; i < probs_uniform.size(); ++i) { BOOST_CHECK_CLOSE(weighted_extended_p_square(acc_uniform)[i], probs_uniform[i], epsilon); } // check for standard normal distribution for (std::size_t i = 0; i < probs_normal1.size(); ++i) { BOOST_CHECK_CLOSE(weighted_extended_p_square(acc_normal1)[i], probs_normal_exact1[i], epsilon); BOOST_CHECK_CLOSE(weighted_extended_p_square(acc_normal2)[i], probs_normal_exact2[i], epsilon); }
See also
The kurtosis of a sample distribution is defined as the ratio of the 4th
central moment and the square of the 2nd central moment (the variance)
of the samples, minus 3. The term -3
is added in order
to ensure that the normal distribution has zero kurtosis. For more implementation
details, see weighted_kurtosis_impl
numeric::functional::average< numeric::functional::multiplies<sample-type
,weight-type
>::result_type , numeric::functional::multiplies<sample-type
,weight-type
>::result_type >::result_type
weighted_mean
weighted_moment<2>
weighted_moment<3>
weighted_moment<4>
none
none
none
none
O(1)
O(1)
Header
#include <boost/accumulators/statistics/weighted_kurtosis.hpp
>
Example
accumulator_set<int, stats<tag::weighted_kurtosis>, int > acc2; acc2(2, weight = 4); acc2(7, weight = 1); acc2(4, weight = 3); acc2(9, weight = 1); acc2(3, weight = 2); BOOST_CHECK_EQUAL( weighted_mean(acc2), 42./11. ); BOOST_CHECK_EQUAL( accumulators::weighted_moment<2>(acc2), 212./11. ); BOOST_CHECK_EQUAL( accumulators::weighted_moment<3>(acc2), 1350./11. ); BOOST_CHECK_EQUAL( accumulators::weighted_moment<4>(acc2), 9956./11. ); BOOST_CHECK_CLOSE( weighted_kurtosis(acc2), 0.58137026432, 1e-6 );
See also
Calculates the weighted mean of samples or variates. The calculation is
either lazy (in the result extractor), or immediate (in the accumulator).
The lazy implementation is the default. For more implementation details,
see weighted_mean_impl
or. immediate_weighted_mean_impl
For samples, numeric::functional::average<numeric::functional::multiplies<
sample-type
, weight-type
>::result_type, weight-type
>::result_type
For variates,
numeric::functional::average<numeric::functional::multiplies<
variate-type
, weight-type
>::result_type,
weight-type
>::result_type
sum_of_weights
The lazy mean of samples depends on weighted_sum
The lazy mean of variates depends on weighted_sum_of_variates<>
weighted_mean_of_variates<
variate-type
, variate-tag
>
immediate_weighted_mean
immediate_weighted_mean_of_variates<
variate-type
, variate-tag
>
none
none
none
O(1)
O(1)
Header
#include <boost/accumulators/statistics/weighted_mean.hpp
>
Example
accumulator_set< int , stats< tag::weighted_mean , tag::weighted_mean_of_variates<int, tag::covariate1> > , int > acc; acc(10, weight = 2, covariate1 = 7); // 20 BOOST_CHECK_EQUAL(2, sum_of_weights(acc)); // // acc(6, weight = 3, covariate1 = 8); // 18 BOOST_CHECK_EQUAL(5, sum_of_weights(acc)); // // acc(4, weight = 4, covariate1 = 9); // 16 BOOST_CHECK_EQUAL(9, sum_of_weights(acc)); // // acc(6, weight = 5, covariate1 = 6); //+ 30 BOOST_CHECK_EQUAL(14, sum_of_weights(acc)); // //= 84 / 14 = 6 BOOST_CHECK_EQUAL(6., weighted_mean(acc)); BOOST_CHECK_EQUAL(52./7., (accumulators::weighted_mean_of_variates<int, tag::covariate1>(acc))); accumulator_set< int , stats< tag::weighted_mean(immediate) , tag::weighted_mean_of_variates<int, tag::covariate1>(immediate) > , int > acc2; acc2(10, weight = 2, covariate1 = 7); // 20 BOOST_CHECK_EQUAL(2, sum_of_weights(acc2)); // // acc2(6, weight = 3, covariate1 = 8); // 18 BOOST_CHECK_EQUAL(5, sum_of_weights(acc2)); // // acc2(4, weight = 4, covariate1 = 9); // 16 BOOST_CHECK_EQUAL(9, sum_of_weights(acc2)); // // acc2(6, weight = 5, covariate1 = 6); //+ 30 BOOST_CHECK_EQUAL(14, sum_of_weights(acc2)); // //= 84 / 14 = 6 BOOST_CHECK_EQUAL(6., weighted_mean(acc2)); BOOST_CHECK_EQUAL(52./7., (accumulators::weighted_mean_of_variates<int, tag::covariate1>(acc2)));
See also
Median estimation for weighted samples based on the P^2
quantile estimator, the density estimator, or the P^2
cumulative distribution estimator. For more implementation details, see
weighted_median_impl
,
with_weighted_density_median_impl
,
and with_weighted_p_square_cumulative_distribution_median_impl
.
The three median accumulators all satisfy the tag::weighted_median
feature, and can all be extracted with the weighted_median()
extractor.
numeric::functional::average<sample-type
, std::size_t>::result_type
weighted_median
depends
on weighted_p_square_quantile_for_median
with_weighted_density_median
depends on count
and weighted_density
with_weighted_p_square_cumulative_distribution_median
depends on weighted_p_square_cumulative_distribution
with_weighted_density_median
(a.k.a. weighted_median(with_weighted_density)
)
with_weighted_p_square_cumulative_distribution_median
(a.k.a. weighted_median(with_weighted_p_square_cumulative_distribution)
)
with_weighted_density_median
requires tag::weighted_density::cache_size
and tag::weighted_density::num_bins
with_weighted_p_square_cumulative_distribution_median
requires tag::weighted_p_square_cumulative_distribution::num_cells
weight
none
TODO
TODO
Header
#include <boost/accumulators/statistics/weighted_median.hpp
>
Example
// Median estimation of normal distribution N(1,1) using samples from a narrow normal distribution N(1,0.01) // The weights equal to the likelihood ratio of the corresponding samples // two random number generators double mu = 1.; double sigma_narrow = 0.01; double sigma = 1.; boost::lagged_fibonacci607 rng; boost::normal_distribution<> mean_sigma_narrow(mu,sigma_narrow); boost::variate_generator<boost::lagged_fibonacci607&, boost::normal_distribution<> > normal_narrow(rng, mean_sigma_narrow); accumulator_set<double, stats<tag::weighted_median(with_weighted_p_square_quantile) >, double > acc; accumulator_set<double, stats<tag::weighted_median(with_weighted_density) >, double > acc_dens( tag::weighted_density::cache_size = 10000, tag::weighted_density::num_bins = 1000 ); accumulator_set<double, stats<tag::weighted_median(with_weighted_p_square_cumulative_distribution) >, double > acc_cdist( tag::weighted_p_square_cumulative_distribution::num_cells = 100 ); for (std::size_t i=0; i<100000; ++i) { double sample = normal_narrow(); acc(sample, weight = std::exp(0.5 * (sample - mu) * (sample - mu) * ( 1./sigma_narrow/sigma_narrow - 1./sigma/sigma ))); acc_dens(sample, weight = std::exp(0.5 * (sample - mu) * (sample - mu) * ( 1./sigma_narrow/sigma_narrow - 1./sigma/sigma ))); acc_cdist(sample, weight = std::exp(0.5 * (sample - mu) * (sample - mu) * ( 1./sigma_narrow/sigma_narrow - 1./sigma/sigma ))); } BOOST_CHECK_CLOSE(1., weighted_median(acc), 1e-1); BOOST_CHECK_CLOSE(1., weighted_median(acc_dens), 1e-1); BOOST_CHECK_CLOSE(1., weighted_median(acc_cdist), 1e-1);
See also
weighted_median_impl
with_weighted_density_median_impl
with_weighted_p_square_cumulative_distribution_median_impl
count
weighted_p_square_quantile
weighted_p_square_cumulative_distribution
Calculates the N-th moment of the weighted samples, which is defined as the sum of the weighted N-th power of the samples over the sum of the weights.
numeric::functional::average< numeric::functional::multiplies<sample-type
,weight-type
>::result_type , weight_type >::result_type
count
sum_of_weights
none
none
weight
none
O(1)
O(1)
Header
#include <boost/accumulators/statistics/weighted_moment.hpp
>
Example
accumulator_set<double, stats<tag::weighted_moment<2> >, double> acc2; accumulator_set<double, stats<tag::weighted_moment<7> >, double> acc7; acc2(2.1, weight = 0.7); acc2(2.7, weight = 1.4); acc2(1.8, weight = 0.9); acc7(2.1, weight = 0.7); acc7(2.7, weight = 1.4); acc7(1.8, weight = 0.9); BOOST_CHECK_CLOSE(5.403, accumulators::weighted_moment<2>(acc2), 1e-5); BOOST_CHECK_CLOSE(548.54182, accumulators::weighted_moment<7>(acc7), 1e-5);
See also
Histogram calculation of the cumulative distribution with the P^2
algorithm for weighted samples. For more implementation details, see weighted_p_square_cumulative_distribution_impl
iterator_range< std::vector< std::pair< numeric::functional::average<weighted_sample, std::size_t>::result_type , numeric::functional::average<weighted_sample, std::size_t>::result_type > >::iterator >
where weighted_sample
is numeric::functional::multiplies<
sample-type
, weight-type
>::result_type
count
sum_or_weights
none
tag::weighted_p_square_cumulative_distribution::num_cells
weight
none
TODO
O(N) where N is num_cells
Header
#include <boost/accumulators/statistics/weighted_p_square_cumulative_distribution.hpp
>
Example
// tolerance in % double epsilon = 4; typedef accumulator_set<double, stats<tag::weighted_p_square_cumulative_distribution>, double > accumulator_t; accumulator_t acc_upper(tag::weighted_p_square_cumulative_distribution::num_cells = 100); accumulator_t acc_lower(tag::weighted_p_square_cumulative_distribution::num_cells = 100); // two random number generators double mu_upper = 1.0; double mu_lower = -1.0; boost::lagged_fibonacci607 rng; boost::normal_distribution<> mean_sigma_upper(mu_upper,1); boost::normal_distribution<> mean_sigma_lower(mu_lower,1); boost::variate_generator<boost::lagged_fibonacci607&, boost::normal_distribution<> > normal_upper(rng, mean_sigma_upper); boost::variate_generator<boost::lagged_fibonacci607&, boost::normal_distribution<> > normal_lower(rng, mean_sigma_lower); for (std::size_t i=0; i<100000; ++i) { double sample = normal_upper(); acc_upper(sample, weight = std::exp(-mu_upper * (sample - 0.5 * mu_upper))); } for (std::size_t i=0; i<100000; ++i) { double sample = normal_lower(); acc_lower(sample, weight = std::exp(-mu_lower * (sample - 0.5 * mu_lower))); } typedef iterator_range<std::vector<std::pair<double, double> >::iterator > histogram_type; histogram_type histogram_upper = weighted_p_square_cumulative_distribution(acc_upper); histogram_type histogram_lower = weighted_p_square_cumulative_distribution(acc_lower); // Note that applaying importance sampling results in a region of the distribution // to be estimated more accurately and another region to be estimated less accurately // than without importance sampling, i.e., with unweighted samples for (std::size_t i = 0; i < histogram_upper.size(); ++i) { // problem with small results: epsilon is relative (in percent), not absolute! // check upper region of distribution if ( histogram_upper[i].second > 0.1 ) BOOST_CHECK_CLOSE( 0.5 * (1.0 + erf( histogram_upper[i].first / sqrt(2.0) )), histogram_upper[i].second, epsilon ); // check lower region of distribution if ( histogram_lower[i].second < -0.1 ) BOOST_CHECK_CLOSE( 0.5 * (1.0 + erf( histogram_lower[i].first / sqrt(2.0) )), histogram_lower[i].second, epsilon ); }
See also
Single quantile estimation with the P^2
algorithm. For
more implementation details, see weighted_p_square_quantile_impl
numeric::functional::average< numeric::functional::multiplies<sample-type
,weight-type
>::result_type , std::size_t >::result_type
count
sum_of_weights
weighted_p_square_quantile_for_median
quantile_probability
,
which defaults to 0.5
.
(Note: for weighted_p_square_quantile_for_median
,
the quantile_probability
parameter is ignored and is always 0.5
.)
weight
none
TODO
O(1)
Header
#include <boost/accumulators/statistics/weighted_p_square_quantile.hpp
>
Example
typedef accumulator_set<double, stats<tag::weighted_p_square_quantile>, double> accumulator_t; // tolerance in % double epsilon = 1; // some random number generators double mu4 = -1.0; double mu5 = -1.0; double mu6 = 1.0; double mu7 = 1.0; boost::lagged_fibonacci607 rng; boost::normal_distribution<> mean_sigma4(mu4, 1); boost::normal_distribution<> mean_sigma5(mu5, 1); boost::normal_distribution<> mean_sigma6(mu6, 1); boost::normal_distribution<> mean_sigma7(mu7, 1); boost::variate_generator<boost::lagged_fibonacci607&, boost::normal_distribution<> > normal4(rng, mean_sigma4); boost::variate_generator<boost::lagged_fibonacci607&, boost::normal_distribution<> > normal5(rng, mean_sigma5); boost::variate_generator<boost::lagged_fibonacci607&, boost::normal_distribution<> > normal6(rng, mean_sigma6); boost::variate_generator<boost::lagged_fibonacci607&, boost::normal_distribution<> > normal7(rng, mean_sigma7); accumulator_t acc0(quantile_probability = 0.001); accumulator_t acc1(quantile_probability = 0.025); accumulator_t acc2(quantile_probability = 0.975); accumulator_t acc3(quantile_probability = 0.999); accumulator_t acc4(quantile_probability = 0.001); accumulator_t acc5(quantile_probability = 0.025); accumulator_t acc6(quantile_probability = 0.975); accumulator_t acc7(quantile_probability = 0.999); for (std::size_t i=0; i<100000; ++i) { double sample = rng(); acc0(sample, weight = 1.); acc1(sample, weight = 1.); acc2(sample, weight = 1.); acc3(sample, weight = 1.); double sample4 = normal4(); double sample5 = normal5(); double sample6 = normal6(); double sample7 = normal7(); acc4(sample4, weight = std::exp(-mu4 * (sample4 - 0.5 * mu4))); acc5(sample5, weight = std::exp(-mu5 * (sample5 - 0.5 * mu5))); acc6(sample6, weight = std::exp(-mu6 * (sample6 - 0.5 * mu6))); acc7(sample7, weight = std::exp(-mu7 * (sample7 - 0.5 * mu7))); } // check for uniform distribution with weight = 1 BOOST_CHECK_CLOSE( weighted_p_square_quantile(acc0), 0.001, 15 ); BOOST_CHECK_CLOSE( weighted_p_square_quantile(acc1), 0.025, 5 ); BOOST_CHECK_CLOSE( weighted_p_square_quantile(acc2), 0.975, epsilon ); BOOST_CHECK_CLOSE( weighted_p_square_quantile(acc3), 0.999, epsilon ); // check for shifted standard normal distribution ("importance sampling") BOOST_CHECK_CLOSE( weighted_p_square_quantile(acc4), -3.090232, epsilon ); BOOST_CHECK_CLOSE( weighted_p_square_quantile(acc5), -1.959963, epsilon ); BOOST_CHECK_CLOSE( weighted_p_square_quantile(acc6), 1.959963, epsilon ); BOOST_CHECK_CLOSE( weighted_p_square_quantile(acc7), 3.090232, epsilon );
See also
Weighted peaks over threshold method for weighted quantile and weighted
tail mean estimation. For more implementation details, see weighted_peaks_over_threshold_impl
and weighted_peaks_over_threshold_prob_impl
.
Both tag::weighted_peaks_over_threshold<
and left-or-right
>tag::weighted_peaks_over_threshold_prob<
satisfy the left-or-right
>tag::weighted_peaks_over_threshold<
feature and can be extracted using
the left-or-right
>weighted_peaks_over_threshold()
extractor.
tuple<float_type,
float_type,
float_type>
where float_type
is
numeric::functional::average< numeric::functional::multiplies<sample-type
,weight-type
>::result_type , std::size_t >::result_type
weighted_peaks_over_threshold<
depends on left-or-right
>sum_of_weights
weighted_peaks_over_threshold_prob<
depends on left-or-right
>sum_of_weights
and tail_weights<
left-or-right
>
weighted_peaks_over_threshold_prob
tag::peaks_over_threshold::threshold_value
tag::peaks_over_threshold_prob::threshold_probability
tag::tail<
left-or-right
>::cache_size
weight
none
TODO
O(1)
Header
#include <boost/accumulators/statistics/weighted_peaks_over_threshold.hpp
>
See also
The skewness of a sample distribution is defined as the ratio of the 3rd
central moment and the 3/2
-th power of the 2nd central
moment (the variance) of the sampless 3. The skewness estimator for weighted
samples is formally identical to the estimator for unweighted samples,
except that the weighted counterparts of all measures it depends on are
to be taken.
For implementation details, see weighted_skewness_impl
.
numeric::functional::average< numeric::functional::multiplies<sample-type
,weight-type
>::result_type , numeric::functional::multiplies<sample-type
,weight-type
>::result_type >::result_type
weighted_mean
weighted_moment<2>
weighted_moment<3>
none
none
weight
none
O(1)
O(1)
Header
#include <boost/accumulators/statistics/weighted_skewness.hpp
>
Example
accumulator_set<int, stats<tag::weighted_skewness>, int > acc2; acc2(2, weight = 4); acc2(7, weight = 1); acc2(4, weight = 3); acc2(9, weight = 1); acc2(3, weight = 2); BOOST_CHECK_EQUAL( weighted_mean(acc2), 42./11. ); BOOST_CHECK_EQUAL( accumulators::weighted_moment<2>(acc2), 212./11. ); BOOST_CHECK_EQUAL( accumulators::weighted_moment<3>(acc2), 1350./11. ); BOOST_CHECK_CLOSE( weighted_skewness(acc2), 1.30708406282, 1e-6 );
See also
For summing the weighted samples or variates. All of the tag::weighted_sum_of_variates<>
features can be extracted with the weighted_sum_of_variates()
extractor. Variants that implement the
Kahan summation algorithm are also provided.
numeric::functional::multiplies<
for summing weighted
samples sample-type
, weight-type
>::result_type
numeric::functional::multiplies<
for summing weighted variates
variate-type
, weight-type
>::result_type
none
tag::weighted_sum
tag::weighted_sum_of_variates<
variate-type
, variate-tag
>
tag::weighted_sum_kahan
(a.k.a. tag::weighted_sum(kahan))
tag::weighted_sum_of_variates_kahan<
variate-type
, variate-tag
>
none
weight
for summing variates
variate-tag
none
O(1). Note that the Kahan sum performs four floating-point sum operations per accumulated value, whereas the naive sum performs only one.
O(1)
Header
#include <boost/accumulators/statistics/weighted_sum.hpp
> #include <boost/accumulators/statistics/weighted_sum_kahan.hpp
>
Example
accumulator_set<int, stats<tag::weighted_sum, tag::weighted_sum_of_variates<int, tag::covariate1> >, int> acc; acc(1, weight = 2, covariate1 = 3); BOOST_CHECK_EQUAL(2, weighted_sum(acc)); BOOST_CHECK_EQUAL(6, weighted_sum_of_variates(acc)); acc(2, weight = 3, covariate1 = 6); BOOST_CHECK_EQUAL(8, weighted_sum(acc)); BOOST_CHECK_EQUAL(24, weighted_sum_of_variates(acc)); acc(4, weight = 6, covariate1 = 9); BOOST_CHECK_EQUAL(32, weighted_sum(acc)); BOOST_CHECK_EQUAL(78, weighted_sum_of_variates(acc)); // demonstrate weighted Kahan summation accumulator_set<float, stats<tag::weighted_sum_kahan>, float > acc; BOOST_CHECK_EQUAL(0.0f, weighted_sum_kahan(acc)); for (size_t i = 0; i < 1e6; ++i) { acc(1.0f, weight = 1e-6f); } BOOST_CHECK_EQUAL(1.0f, weighted_sum_kahan(acc));
See also
Estimation of the (non-coherent) weighted tail mean based on order statistics
(for both left and right tails). The left non-coherent weighted tail mean
feature is tag::non_coherent_weighted_tail_mean<left>
,
and the right non-choherent weighted tail mean feature is tag::non_coherent_weighted_tail_mean<right>
.
They both share the tag::abstract_non_coherent_tail_mean
feature with the unweighted non-coherent tail mean accumulators and can
be extracted with either the non_coherent_tail_mean()
or the non_coherent_weighted_tail_mean()
extractors. For more implementation details,
see non_coherent_weighted_tail_mean_impl
.
numeric::functional::average< numeric::functional::multiplies<sample-type
,weight-type
>::result_type , std::size_t >::result_type
sum_of_weights
tail_weights<
left-or-right
>
abstract_non_coherent_tail_mean
tag::tail<
left-or-right
>::cache_size
none
quantile_probability
O(log N), where N is the cache size
O(N log N), where N is the cache size
Header
#include <boost/accumulators/statistics/weighted_tail_mean.hpp
>
Example
// tolerance in % double epsilon = 1; std::size_t n = 100000; // number of MC steps std::size_t c = 25000; // cache size accumulator_set<double, stats<tag::non_coherent_weighted_tail_mean<right> >, double > acc0( right_tail_cache_size = c ); accumulator_set<double, stats<tag::non_coherent_weighted_tail_mean<left> >, double > acc1( left_tail_cache_size = c ); // random number generators boost::lagged_fibonacci607 rng; for (std::size_t i = 0; i < n; ++i) { double smpl = std::sqrt(rng()); acc0(smpl, weight = 1./smpl); } for (std::size_t i = 0; i < n; ++i) { double smpl = rng(); acc1(smpl*smpl, weight = smpl); } // check uniform distribution BOOST_CHECK_CLOSE( non_coherent_weighted_tail_mean(acc0, quantile_probability = 0.95), 0.975, epsilon ); BOOST_CHECK_CLOSE( non_coherent_weighted_tail_mean(acc0, quantile_probability = 0.975), 0.9875, epsilon ); BOOST_CHECK_CLOSE( non_coherent_weighted_tail_mean(acc0, quantile_probability = 0.99), 0.995, epsilon ); BOOST_CHECK_CLOSE( non_coherent_weighted_tail_mean(acc0, quantile_probability = 0.999), 0.9995, epsilon ); BOOST_CHECK_CLOSE( non_coherent_weighted_tail_mean(acc1, quantile_probability = 0.05), 0.025, epsilon ); BOOST_CHECK_CLOSE( non_coherent_weighted_tail_mean(acc1, quantile_probability = 0.025), 0.0125, epsilon ); BOOST_CHECK_CLOSE( non_coherent_weighted_tail_mean(acc1, quantile_probability = 0.01), 0.005, epsilon ); BOOST_CHECK_CLOSE( non_coherent_weighted_tail_mean(acc1, quantile_probability = 0.001), 0.0005, 5*epsilon );
See also
Tail quantile estimation based on order statistics of weighted samples
(for both left and right tails). The left weighted tail quantile feature
is tag::weighted_tail_quantile<left>
,
and the right weighted tail quantile feature is tag::weighted_tail_quantile<right>
. They both share the tag::quantile
feature with the unweighted
tail quantile accumulators and can be extracted with either the quantile()
or the weighted_tail_quantile()
extractors. For more implementation details,
see weighted_tail_quantile_impl
sample-type
sum_of_weights
tail_weights<
left-or-right
>
none
tag::tail<
left-or-right
>::cache_size
none
quantile_probability
O(log N), where N is the cache size
O(N log N), where N is the cache size
Header
#include <boost/accumulators/statistics/weighted_tail_quantile.hpp
>
Example
// tolerance in % double epsilon = 1; std::size_t n = 100000; // number of MC steps std::size_t c = 20000; // cache size double mu1 = 1.0; double mu2 = -1.0; boost::lagged_fibonacci607 rng; boost::normal_distribution<> mean_sigma1(mu1,1); boost::normal_distribution<> mean_sigma2(mu2,1); boost::variate_generator<boost::lagged_fibonacci607&, boost::normal_distribution<> > normal1(rng, mean_sigma1); boost::variate_generator<boost::lagged_fibonacci607&, boost::normal_distribution<> > normal2(rng, mean_sigma2); accumulator_set<double, stats<tag::weighted_tail_quantile<right> >, double> acc1(right_tail_cache_size = c); accumulator_set<double, stats<tag::weighted_tail_quantile<left> >, double> acc2(left_tail_cache_size = c); for (std::size_t i = 0; i < n; ++i) { double sample1 = normal1(); double sample2 = normal2(); acc1(sample1, weight = std::exp(-mu1 * (sample1 - 0.5 * mu1))); acc2(sample2, weight = std::exp(-mu2 * (sample2 - 0.5 * mu2))); } // check standard normal distribution BOOST_CHECK_CLOSE( quantile(acc1, quantile_probability = 0.975), 1.959963, epsilon ); BOOST_CHECK_CLOSE( quantile(acc1, quantile_probability = 0.999), 3.090232, epsilon ); BOOST_CHECK_CLOSE( quantile(acc2, quantile_probability = 0.025), -1.959963, epsilon ); BOOST_CHECK_CLOSE( quantile(acc2, quantile_probability = 0.001), -3.090232, epsilon );
See also
Estimation of the absolute and relative weighted tail variate means (for
both left and right tails) The absolute weighted tail variate means has
the feature tag::absolute_weighted_tail_variate_means<
and the relative weighted tail
variate mean has the feature left-or-right
, variate-type
,
variate-tag
>tag::relative_weighted_tail_variate_means<
. All absolute weighted tail
variate mean features share the left-or-right
, variate-type
,
variate-tag
>tag::abstract_absolute_tail_variate_means
feature with their unweighted variants and can be extracted with the tail_variate_means()
and weighted_tail_variate_means()
extractors. All the relative weighted
tail variate mean features share the tag::abstract_relative_tail_variate_means
feature with their unweighted variants and can be extracted with either
the relative_tail_variate_means()
or relative_weighted_tail_variate_means()
extractors.
For more implementation details, see weighted_tail_variate_means_impl
boost::iterator_range< numeric::functional::average< numeric::functional::multiplies<variate-type
,weight-type
>::result_type ,weight-type
>::result_type::iterator >
non_coherent_weighted_tail_mean<
left-or-right
>
tail_variate<
variate-type
, variate-tag
, left-or-right
>
tail_weights<
left-or-right
>
tag::absolute_weighted_tail_variate_means<
left-or-right
, variate-type
, variate-tag
>
tag::relative_weighted_tail_variate_means<
left-or-right
, variate-type
, variate-tag
>
tag::tail<
left-or-right
>::cache_size
none
quantile_probability
O(log N), where N is the cache size
O(N log N), where N is the cache size
Header
#include <boost/accumulators/statistics/weighted_tail_variate_means.hpp
>
Example
std::size_t c = 5; // cache size typedef double variate_type; typedef std::vector<variate_type> variate_set_type; accumulator_set<double, stats<tag::weighted_tail_variate_means<right, variate_set_type, tag::covariate1>(relative)>, double > acc1( right_tail_cache_size = c ); accumulator_set<double, stats<tag::weighted_tail_variate_means<right, variate_set_type, tag::covariate1>(absolute)>, double > acc2( right_tail_cache_size = c ); accumulator_set<double, stats<tag::weighted_tail_variate_means<left, variate_set_type, tag::covariate1>(relative)>, double > acc3( left_tail_cache_size = c ); accumulator_set<double, stats<tag::weighted_tail_variate_means<left, variate_set_type, tag::covariate1>(absolute)>, double > acc4( left_tail_cache_size = c ); variate_set_type cov1, cov2, cov3, cov4, cov5; double c1[] = { 10., 20., 30., 40. }; // 100 double c2[] = { 26., 4., 17., 3. }; // 50 double c3[] = { 46., 64., 40., 50. }; // 200 double c4[] = { 1., 3., 70., 6. }; // 80 double c5[] = { 2., 2., 2., 14. }; // 20 cov1.assign(c1, c1 + sizeof(c1)/sizeof(variate_type)); cov2.assign(c2, c2 + sizeof(c2)/sizeof(variate_type)); cov3.assign(c3, c3 + sizeof(c3)/sizeof(variate_type)); cov4.assign(c4, c4 + sizeof(c4)/sizeof(variate_type)); cov5.assign(c5, c5 + sizeof(c5)/sizeof(variate_type)); acc1(100., weight = 0.8, covariate1 = cov1); acc1( 50., weight = 0.9, covariate1 = cov2); acc1(200., weight = 1.0, covariate1 = cov3); acc1( 80., weight = 1.1, covariate1 = cov4); acc1( 20., weight = 1.2, covariate1 = cov5); acc2(100., weight = 0.8, covariate1 = cov1); acc2( 50., weight = 0.9, covariate1 = cov2); acc2(200., weight = 1.0, covariate1 = cov3); acc2( 80., weight = 1.1, covariate1 = cov4); acc2( 20., weight = 1.2, covariate1 = cov5); acc3(100., weight = 0.8, covariate1 = cov1); acc3( 50., weight = 0.9, covariate1 = cov2); acc3(200., weight = 1.0, covariate1 = cov3); acc3( 80., weight = 1.1, covariate1 = cov4); acc3( 20., weight = 1.2, covariate1 = cov5); acc4(100., weight = 0.8, covariate1 = cov1); acc4( 50., weight = 0.9, covariate1 = cov2); acc4(200., weight = 1.0, covariate1 = cov3); acc4( 80., weight = 1.1, covariate1 = cov4); acc4( 20., weight = 1.2, covariate1 = cov5); // check relative risk contributions BOOST_CHECK_EQUAL( *(relative_weighted_tail_variate_means(acc1, quantile_probability = 0.7).begin() ), (0.8*10 + 1.0*46)/(0.8*100 + 1.0*200) ); BOOST_CHECK_EQUAL( *(relative_weighted_tail_variate_means(acc1, quantile_probability = 0.7).begin() + 1), (0.8*20 + 1.0*64)/(0.8*100 + 1.0*200) ); BOOST_CHECK_EQUAL( *(relative_weighted_tail_variate_means(acc1, quantile_probability = 0.7).begin() + 2), (0.8*30 + 1.0*40)/(0.8*100 + 1.0*200) ); BOOST_CHECK_EQUAL( *(relative_weighted_tail_variate_means(acc1, quantile_probability = 0.7).begin() + 3), (0.8*40 + 1.0*50)/(0.8*100 + 1.0*200) ); BOOST_CHECK_EQUAL( *(relative_weighted_tail_variate_means(acc3, quantile_probability = 0.3).begin() ), (0.9*26 + 1.2*2)/(0.9*50 + 1.2*20) ); BOOST_CHECK_EQUAL( *(relative_weighted_tail_variate_means(acc3, quantile_probability = 0.3).begin() + 1), (0.9*4 + 1.2*2)/(0.9*50 + 1.2*20) ); BOOST_CHECK_EQUAL( *(relative_weighted_tail_variate_means(acc3, quantile_probability = 0.3).begin() + 2), (0.9*17 + 1.2*2)/(0.9*50 + 1.2*20) ); BOOST_CHECK_EQUAL( *(relative_weighted_tail_variate_means(acc3, quantile_probability = 0.3).begin() + 3), (0.9*3 + 1.2*14)/(0.9*50 + 1.2*20) ); // check absolute risk contributions BOOST_CHECK_EQUAL( *(weighted_tail_variate_means(acc2, quantile_probability = 0.7).begin() ), (0.8*10 + 1.0*46)/1.8 ); BOOST_CHECK_EQUAL( *(weighted_tail_variate_means(acc2, quantile_probability = 0.7).begin() + 1), (0.8*20 + 1.0*64)/1.8 ); BOOST_CHECK_EQUAL( *(weighted_tail_variate_means(acc2, quantile_probability = 0.7).begin() + 2), (0.8*30 + 1.0*40)/1.8 ); BOOST_CHECK_EQUAL( *(weighted_tail_variate_means(acc2, quantile_probability = 0.7).begin() + 3), (0.8*40 + 1.0*50)/1.8 ); BOOST_CHECK_EQUAL( *(weighted_tail_variate_means(acc4, quantile_probability = 0.3).begin() ), (0.9*26 + 1.2*2)/2.1 ); BOOST_CHECK_EQUAL( *(weighted_tail_variate_means(acc4, quantile_probability = 0.3).begin() + 1), (0.9*4 + 1.2*2)/2.1 ); BOOST_CHECK_EQUAL( *(weighted_tail_variate_means(acc4, quantile_probability = 0.3).begin() + 2), (0.9*17 + 1.2*2)/2.1 ); BOOST_CHECK_EQUAL( *(weighted_tail_variate_means(acc4, quantile_probability = 0.3).begin() + 3), (0.9*3 + 1.2*14)/2.1 ); // check relative risk contributions BOOST_CHECK_EQUAL( *(relative_weighted_tail_variate_means(acc1, quantile_probability = 0.9).begin() ), 1.0*46/(1.0*200) ); BOOST_CHECK_EQUAL( *(relative_weighted_tail_variate_means(acc1, quantile_probability = 0.9).begin() + 1), 1.0*64/(1.0*200) ); BOOST_CHECK_EQUAL( *(relative_weighted_tail_variate_means(acc1, quantile_probability = 0.9).begin() + 2), 1.0*40/(1.0*200) ); BOOST_CHECK_EQUAL( *(relative_weighted_tail_variate_means(acc1, quantile_probability = 0.9).begin() + 3), 1.0*50/(1.0*200) ); BOOST_CHECK_EQUAL( *(relative_weighted_tail_variate_means(acc3, quantile_probability = 0.1).begin() ), 1.2*2/(1.2*20) ); BOOST_CHECK_EQUAL( *(relative_weighted_tail_variate_means(acc3, quantile_probability = 0.1).begin() + 1), 1.2*2/(1.2*20) ); BOOST_CHECK_EQUAL( *(relative_weighted_tail_variate_means(acc3, quantile_probability = 0.1).begin() + 2), 1.2*2/(1.2*20) ); BOOST_CHECK_EQUAL( *(relative_weighted_tail_variate_means(acc3, quantile_probability = 0.1).begin() + 3), 1.2*14/(1.2*20) ); // check absolute risk contributions BOOST_CHECK_EQUAL( *(weighted_tail_variate_means(acc2, quantile_probability = 0.9).begin() ), 1.0*46/1.0 ); BOOST_CHECK_EQUAL( *(weighted_tail_variate_means(acc2, quantile_probability = 0.9).begin() + 1), 1.0*64/1.0 ); BOOST_CHECK_EQUAL( *(weighted_tail_variate_means(acc2, quantile_probability = 0.9).begin() + 2), 1.0*40/1.0 ); BOOST_CHECK_EQUAL( *(weighted_tail_variate_means(acc2, quantile_probability = 0.9).begin() + 3), 1.0*50/1.0 ); BOOST_CHECK_EQUAL( *(weighted_tail_variate_means(acc4, quantile_probability = 0.1).begin() ), 1.2*2/1.2 ); BOOST_CHECK_EQUAL( *(weighted_tail_variate_means(acc4, quantile_probability = 0.1).begin() + 1), 1.2*2/1.2 ); BOOST_CHECK_EQUAL( *(weighted_tail_variate_means(acc4, quantile_probability = 0.1).begin() + 2), 1.2*2/1.2 ); BOOST_CHECK_EQUAL( *(weighted_tail_variate_means(acc4, quantile_probability = 0.1).begin() + 3), 1.2*14/1.2 );
See also
Lazy or iterative calculation of the weighted variance. The lazy calculation
is associated with the tag::lazy_weighted_variance
feature, and the iterative calculation with the tag::weighted_variance
feature. Both can be extracted using the tag::weighted_variance()
extractor. For more implementation details,
see lazy_weighted_variance_impl
and weighted_variance_impl
numeric::functional::average< numeric::functional::multiplies<sample-type
,weight-type
>::result_type , std::size_t >::result_type
tag::lazy_weighted_variance
depends
on tag::weighted_moment<2>
and tag::weighted_mean
tag::weighted_variance
depends on tag::count
and tag::immediate_weighted_mean
tag::lazy_weighted_variance
(a.k.a.
tag::weighted_variance(lazy))
tag::weighted_variance
(a.k.a. tag::weighted_variance(immediate)
)
none
weight
none
O(1)
O(1)
Header
#include <boost/accumulators/statistics/weighted_variance.hpp
>
Example
// lazy weighted_variance accumulator_set<int, stats<tag::weighted_variance(lazy)>, int> acc1; acc1(1, weight = 2); // 2 acc1(2, weight = 3); // 6 acc1(3, weight = 1); // 3 acc1(4, weight = 4); // 16 acc1(5, weight = 1); // 5 // weighted_mean = (2+6+3+16+5) / (2+3+1+4+1) = 32 / 11 = 2.9090909090909090909090909090909 BOOST_CHECK_EQUAL(5u, count(acc1)); BOOST_CHECK_CLOSE(2.9090909, weighted_mean(acc1), 1e-5); BOOST_CHECK_CLOSE(10.1818182, accumulators::weighted_moment<2>(acc1), 1e-5); BOOST_CHECK_CLOSE(1.7190083, weighted_variance(acc1), 1e-5); // immediate weighted_variance accumulator_set<int, stats<tag::weighted_variance>, int> acc2; acc2(1, weight = 2); acc2(2, weight = 3); acc2(3, weight = 1); acc2(4, weight = 4); acc2(5, weight = 1); BOOST_CHECK_EQUAL(5u, count(acc2)); BOOST_CHECK_CLOSE(2.9090909, weighted_mean(acc2), 1e-5); BOOST_CHECK_CLOSE(1.7190083, weighted_variance(acc2), 1e-5); // check lazy and immediate variance with random numbers // two random number generators boost::lagged_fibonacci607 rng; boost::normal_distribution<> mean_sigma(0,1); boost::variate_generator<boost::lagged_fibonacci607&, boost::normal_distribution<> > normal(rng, mean_sigma); accumulator_set<double, stats<tag::weighted_variance>, double > acc_lazy; accumulator_set<double, stats<tag::weighted_variance(immediate)>, double > acc_immediate; for (std::size_t i=0; i<10000; ++i) { double value = normal(); acc_lazy(value, weight = rng()); acc_immediate(value, weight = rng()); } BOOST_CHECK_CLOSE(1., weighted_variance(acc_lazy), 1.); BOOST_CHECK_CLOSE(1., weighted_variance(acc_immediate), 1.);
See also