boost/msm/back/state_machine.hpp
// Copyright 2008 Christophe Henry
// henry UNDERSCORE christophe AT hotmail DOT com
// This is an extended version of the state machine available in the boost::mpl library
// Distributed under the same license as the original.
// Copyright for the original version:
// Copyright 2005 David Abrahams and Aleksey Gurtovoy. Distributed
// under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MSM_BACK_STATEMACHINE_H
#define BOOST_MSM_BACK_STATEMACHINE_H
#include <exception>
#include <vector>
#include <functional>
#include <numeric>
#include <utility>
#include <boost/mpl/contains.hpp>
#include <boost/mpl/deref.hpp>
#include <boost/mpl/assert.hpp>
#include <boost/fusion/container/vector/convert.hpp>
#include <boost/fusion/include/as_vector.hpp>
#include <boost/fusion/include/as_set.hpp>
#include <boost/fusion/container/set.hpp>
#include <boost/fusion/include/set.hpp>
#include <boost/fusion/include/set_fwd.hpp>
#include <boost/fusion/include/mpl.hpp>
#include <boost/fusion/sequence/intrinsic/at_key.hpp>
#include <boost/fusion/include/at_key.hpp>
#include <boost/fusion/algorithm/iteration/for_each.hpp>
#include <boost/fusion/include/for_each.hpp>
#include <boost/assert.hpp>
#include <boost/ref.hpp>
#include <boost/type_traits.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/is_convertible.hpp>
#include <boost/bind.hpp>
#include <boost/bind/apply.hpp>
#include <boost/function.hpp>
#ifndef BOOST_NO_RTTI
#include <boost/any.hpp>
#endif
#include <boost/serialization/base_object.hpp>
#include <boost/parameter.hpp>
#include <boost/msm/active_state_switching_policies.hpp>
#include <boost/msm/row_tags.hpp>
#include <boost/msm/msm_grammar.hpp>
#include <boost/msm/back/fold_to_list.hpp>
#include <boost/msm/back/metafunctions.hpp>
#include <boost/msm/back/history_policies.hpp>
#include <boost/msm/back/common_types.hpp>
#include <boost/msm/back/args.hpp>
#include <boost/msm/back/default_compile_policy.hpp>
#include <boost/msm/back/dispatch_table.hpp>
#include <boost/msm/back/no_fsm_check.hpp>
#include <boost/msm/back/queue_container_deque.hpp>
BOOST_MPL_HAS_XXX_TRAIT_DEF(accept_sig)
BOOST_MPL_HAS_XXX_TRAIT_DEF(no_automatic_create)
BOOST_MPL_HAS_XXX_TRAIT_DEF(non_forwarding_flag)
BOOST_MPL_HAS_XXX_TRAIT_DEF(direct_entry)
BOOST_MPL_HAS_XXX_TRAIT_DEF(initial_event)
BOOST_MPL_HAS_XXX_TRAIT_DEF(final_event)
BOOST_MPL_HAS_XXX_TRAIT_DEF(do_serialize)
BOOST_MPL_HAS_XXX_TRAIT_DEF(history_policy)
BOOST_MPL_HAS_XXX_TRAIT_DEF(fsm_check)
BOOST_MPL_HAS_XXX_TRAIT_DEF(compile_policy)
BOOST_MPL_HAS_XXX_TRAIT_DEF(queue_container_policy)
BOOST_MPL_HAS_XXX_TRAIT_DEF(using_declared_table)
#ifndef BOOST_MSM_CONSTRUCTOR_ARG_SIZE
#define BOOST_MSM_CONSTRUCTOR_ARG_SIZE 5 // default max number of arguments for constructors
#endif
namespace boost { namespace msm { namespace back
{
// event used internally for wrapping a direct entry
template <class StateType,class Event>
struct direct_entry_event
{
typedef int direct_entry;
typedef StateType active_state;
typedef Event contained_event;
direct_entry_event(Event const& evt):m_event(evt){}
Event const& m_event;
};
// This declares the statically-initialized dispatch_table instance.
template <class Fsm,class Stt, class Event,class CompilePolicy>
const boost::msm::back::dispatch_table<Fsm,Stt, Event,CompilePolicy>
dispatch_table<Fsm,Stt, Event,CompilePolicy>::instance;
BOOST_PARAMETER_TEMPLATE_KEYWORD(front_end)
BOOST_PARAMETER_TEMPLATE_KEYWORD(history_policy)
BOOST_PARAMETER_TEMPLATE_KEYWORD(compile_policy)
BOOST_PARAMETER_TEMPLATE_KEYWORD(fsm_check_policy)
BOOST_PARAMETER_TEMPLATE_KEYWORD(queue_container_policy)
typedef ::boost::parameter::parameters<
::boost::parameter::required< ::boost::msm::back::tag::front_end >
, ::boost::parameter::optional<
::boost::parameter::deduced< ::boost::msm::back::tag::history_policy>, has_history_policy< ::boost::mpl::_ >
>
, ::boost::parameter::optional<
::boost::parameter::deduced< ::boost::msm::back::tag::compile_policy>, has_compile_policy< ::boost::mpl::_ >
>
, ::boost::parameter::optional<
::boost::parameter::deduced< ::boost::msm::back::tag::fsm_check_policy>, has_fsm_check< ::boost::mpl::_ >
>
, ::boost::parameter::optional<
::boost::parameter::deduced< ::boost::msm::back::tag::queue_container_policy>,
has_queue_container_policy< ::boost::mpl::_ >
>
> state_machine_signature;
// just here to disable use of proto when not needed
template <class T, class F,class Enable=void>
struct make_euml_terminal;
template <class T,class F>
struct make_euml_terminal<T,F,typename ::boost::disable_if<has_using_declared_table<F> >::type>
{};
template <class T,class F>
struct make_euml_terminal<T,F,typename ::boost::enable_if<has_using_declared_table<F> >::type>
: public proto::extends<typename proto::terminal< boost::msm::state_tag>::type, T, boost::msm::state_domain>
{};
// library-containing class for state machines. Pass the actual FSM class as
// the Concrete parameter.
// A0=Derived,A1=NoHistory,A2=CompilePolicy,A3=FsmCheckPolicy >
template <
class A0
, class A1 = parameter::void_
, class A2 = parameter::void_
, class A3 = parameter::void_
, class A4 = parameter::void_
>
class state_machine : //public Derived
public ::boost::parameter::binding<
typename state_machine_signature::bind<A0,A1,A2,A3,A4>::type, ::boost::msm::back::tag::front_end
>::type
, public make_euml_terminal<state_machine<A0,A1,A2,A3,A4>,
typename ::boost::parameter::binding<
typename state_machine_signature::bind<A0,A1,A2,A3,A4>::type, ::boost::msm::back::tag::front_end
>::type
>
{
public:
// Create ArgumentPack
typedef typename
state_machine_signature::bind<A0,A1,A2,A3,A4>::type
state_machine_args;
// Extract first logical parameter.
typedef typename ::boost::parameter::binding<
state_machine_args, ::boost::msm::back::tag::front_end>::type Derived;
typedef typename ::boost::parameter::binding<
state_machine_args, ::boost::msm::back::tag::history_policy, NoHistory >::type HistoryPolicy;
typedef typename ::boost::parameter::binding<
state_machine_args, ::boost::msm::back::tag::compile_policy, favor_runtime_speed >::type CompilePolicy;
typedef typename ::boost::parameter::binding<
state_machine_args, ::boost::msm::back::tag::fsm_check_policy, no_fsm_check >::type FsmCheckPolicy;
typedef typename ::boost::parameter::binding<
state_machine_args, ::boost::msm::back::tag::queue_container_policy,
queue_container_deque >::type QueueContainerPolicy;
private:
typedef boost::msm::back::state_machine<
A0,A1,A2,A3,A4> library_sm;
typedef ::boost::function<
execute_return ()> transition_fct;
typedef ::boost::function<
execute_return () > deferred_fct;
typedef typename QueueContainerPolicy::
template In<
std::pair<deferred_fct,bool> >::type deferred_events_queue_t;
typedef typename QueueContainerPolicy::
template In<transition_fct>::type events_queue_t;
typedef typename boost::mpl::eval_if<
typename is_active_state_switch_policy<Derived>::type,
get_active_state_switch_policy<Derived>,
// default
::boost::mpl::identity<active_state_switch_after_entry>
>::type active_state_switching;
typedef bool (*flag_handler)(library_sm const&);
// all state machines are friend with each other to allow embedding any of them in another fsm
template <class ,class , class, class, class
> friend class boost::msm::back::state_machine;
// helper to add, if needed, visitors to all states
// version without visitors
template <class StateType,class Enable=void>
struct visitor_fct_helper
{
public:
visitor_fct_helper(){}
void fill_visitors(int)
{
}
template <class FCT>
void insert(int,FCT)
{
}
template <class VISITOR>
void execute(int,VISITOR)
{
}
};
// version with visitors
template <class StateType>
struct visitor_fct_helper<StateType,typename ::boost::enable_if<has_accept_sig<StateType> >::type>
{
public:
visitor_fct_helper():m_state_visitors(){}
void fill_visitors(int number_of_states)
{
m_state_visitors.resize(number_of_states);
}
template <class FCT>
void insert(int index,FCT fct)
{
m_state_visitors[index]=fct;
}
void execute(int index)
{
m_state_visitors[index]();
}
#define MSM_VISITOR_HELPER_EXECUTE_SUB(z, n, unused) ARG ## n vis ## n
#define MSM_VISITOR_HELPER_EXECUTE(z, n, unused) \
template <BOOST_PP_ENUM_PARAMS(n, class ARG)> \
void execute(int index BOOST_PP_COMMA_IF(n) \
BOOST_PP_ENUM(n, MSM_VISITOR_HELPER_EXECUTE_SUB, ~ ) ) \
{ \
m_state_visitors[index](BOOST_PP_ENUM_PARAMS(n,vis)); \
}
BOOST_PP_REPEAT_FROM_TO(1,BOOST_PP_ADD(BOOST_MSM_VISITOR_ARG_SIZE,1), MSM_VISITOR_HELPER_EXECUTE, ~)
#undef MSM_VISITOR_HELPER_EXECUTE
#undef MSM_VISITOR_HELPER_EXECUTE_SUB
private:
typedef typename StateType::accept_sig::type visitor_fct;
typedef std::vector<visitor_fct> visitors;
visitors m_state_visitors;
};
template <class StateType,class Enable=int>
struct deferred_msg_queue_helper
{
};
template <class StateType>
struct deferred_msg_queue_helper<StateType,
typename ::boost::enable_if<
typename ::boost::msm::back::has_fsm_deferred_events<StateType>::type,int >::type>
{
public:
deferred_msg_queue_helper():m_deferred_events_queue(){}
deferred_events_queue_t m_deferred_events_queue;
};
public:
// tags
typedef int composite_tag;
// in case someone needs to know
typedef HistoryPolicy history_policy;
struct InitEvent { };
struct ExitEvent { };
// flag handling
struct Flag_AND
{
typedef std::logical_and<bool> type;
};
struct Flag_OR
{
typedef std::logical_or<bool> type;
};
typedef typename Derived::BaseAllStates BaseState;
typedef Derived ConcreteSM;
// if the front-end fsm provides an initial_event typedef, replace InitEvent by this one
typedef typename ::boost::mpl::eval_if<
typename has_initial_event<Derived>::type,
get_initial_event<Derived>,
::boost::mpl::identity<InitEvent>
>::type fsm_initial_event;
// if the front-end fsm provides an exit_event typedef, replace ExitEvent by this one
typedef typename ::boost::mpl::eval_if<
typename has_final_event<Derived>::type,
get_final_event<Derived>,
::boost::mpl::identity<ExitEvent>
>::type fsm_final_event;
template <class ExitPoint>
struct exit_pt : public ExitPoint
{
// tags
typedef ExitPoint wrapped_exit;
typedef int pseudo_exit;
typedef library_sm owner;
typedef int no_automatic_create;
typedef typename
ExitPoint::event Event;
typedef ::boost::function<execute_return (Event const&)>
forwarding_function;
// forward event to the higher-level FSM
template <class ForwardEvent>
void forward_event(ForwardEvent const& incomingEvent)
{
// use helper to forward or not
ForwardHelper< ::boost::is_convertible<ForwardEvent,Event>::value>::helper(incomingEvent,m_forward);
}
void set_forward_fct(::boost::function<execute_return (Event const&)> fct)
{
m_forward = fct;
}
exit_pt():m_forward(){}
// by assignments, we keep our forwarding functor unchanged as our containing SM did not change
template <class RHS>
exit_pt(RHS& rhs):m_forward(){}
exit_pt<ExitPoint>& operator= (const exit_pt<ExitPoint>& )
{
return *this;
}
private:
forwarding_function m_forward;
// using partial specialization instead of enable_if because of VC8 bug
template <bool OwnEvent, int Dummy=0>
struct ForwardHelper
{
template <class ForwardEvent>
static void helper(ForwardEvent const& ,forwarding_function& )
{
// Not our event, assert
BOOST_ASSERT(false);
}
};
template <int Dummy>
struct ForwardHelper<true,Dummy>
{
template <class ForwardEvent>
static void helper(ForwardEvent const& incomingEvent,forwarding_function& forward_fct)
{
// call if handler set, if not, this state is simply a terminate state
if (forward_fct)
forward_fct(incomingEvent);
}
};
};
template <class EntryPoint>
struct entry_pt : public EntryPoint
{
// tags
typedef EntryPoint wrapped_entry;
typedef int pseudo_entry;
typedef library_sm owner;
typedef int no_automatic_create;
};
template <class EntryPoint>
struct direct : public EntryPoint
{
// tags
typedef EntryPoint wrapped_entry;
typedef int explicit_entry_state;
typedef library_sm owner;
typedef int no_automatic_create;
};
typedef typename get_number_of_regions<typename Derived::initial_state>::type nr_regions;
// Template used to form rows in the transition table
template<
typename ROW
>
struct row_
{
//typedef typename ROW::Source T1;
typedef typename make_entry<typename ROW::Source,library_sm>::type T1;
typedef typename make_exit<typename ROW::Target,library_sm>::type T2;
typedef typename ROW::Evt transition_event;
// if the source is an exit pseudo state, then
// current_state_type becomes the result of get_owner
// meaning the containing SM from which the exit occurs
typedef typename ::boost::mpl::eval_if<
typename has_pseudo_exit<T1>::type,
get_owner<T1,library_sm>,
::boost::mpl::identity<typename ROW::Source> >::type current_state_type;
// if Target is a sequence, then we have a fork and expect a sequence of explicit_entry
// else if Target is an explicit_entry, next_state_type becomes the result of get_owner
// meaning the containing SM if the row is "outside" the containing SM or else the explicit_entry state itself
typedef typename ::boost::mpl::eval_if<
typename ::boost::mpl::is_sequence<T2>::type,
get_fork_owner<T2,library_sm>,
::boost::mpl::eval_if<
typename has_no_automatic_create<T2>::type,
get_owner<T2,library_sm>,
::boost::mpl::identity<T2> >
>::type next_state_type;
// if a guard condition is here, call it to check that the event is accepted
static bool check_guard(library_sm& fsm,transition_event const& evt)
{
if ( ROW::guard_call(fsm,evt,
::boost::fusion::at_key<current_state_type>(fsm.m_substate_list),
::boost::fusion::at_key<next_state_type>(fsm.m_substate_list),
fsm.m_substate_list ) )
return true;
return false;
}
// Take the transition action and return the next state.
static HandledEnum execute(library_sm& fsm, int region_index, int state, transition_event const& evt)
{
BOOST_STATIC_CONSTANT(int, current_state = (get_state_id<stt,current_state_type>::type::value));
BOOST_STATIC_CONSTANT(int, next_state = (get_state_id<stt,next_state_type>::type::value));
BOOST_ASSERT(state == (current_state));
// if T1 is an exit pseudo state, then take the transition only if the pseudo exit state is active
if (has_pseudo_exit<T1>::type::value &&
!is_exit_state_active<T1,get_owner<T1,library_sm> >(fsm))
{
return HANDLED_FALSE;
}
if (!check_guard(fsm,evt))
{
// guard rejected the event, we stay in the current one
return HANDLED_GUARD_REJECT;
}
fsm.m_states[region_index] = active_state_switching::after_guard(current_state,next_state);
// the guard condition has already been checked
execute_exit<current_state_type>
(::boost::fusion::at_key<current_state_type>(fsm.m_substate_list),evt,fsm);
fsm.m_states[region_index] = active_state_switching::after_exit(current_state,next_state);
// then call the action method
HandledEnum res = ROW::action_call(fsm,evt,
::boost::fusion::at_key<current_state_type>(fsm.m_substate_list),
::boost::fusion::at_key<next_state_type>(fsm.m_substate_list),
fsm.m_substate_list);
fsm.m_states[region_index] = active_state_switching::after_action(current_state,next_state);
// and finally the entry method of the new current state
convert_event_and_execute_entry<next_state_type,T2>
(::boost::fusion::at_key<next_state_type>(fsm.m_substate_list),evt,fsm);
fsm.m_states[region_index] = active_state_switching::after_entry(current_state,next_state);
return res;
}
};
// row having only a guard condition
template<
typename ROW
>
struct g_row_
{
//typedef typename ROW::Source T1;
typedef typename make_entry<typename ROW::Source,library_sm>::type T1;
typedef typename make_exit<typename ROW::Target,library_sm>::type T2;
typedef typename ROW::Evt transition_event;
// if the source is an exit pseudo state, then
// current_state_type becomes the result of get_owner
// meaning the containing SM from which the exit occurs
typedef typename ::boost::mpl::eval_if<
typename has_pseudo_exit<T1>::type,
get_owner<T1,library_sm>,
::boost::mpl::identity<typename ROW::Source> >::type current_state_type;
// if Target is a sequence, then we have a fork and expect a sequence of explicit_entry
// else if Target is an explicit_entry, next_state_type becomes the result of get_owner
// meaning the containing SM if the row is "outside" the containing SM or else the explicit_entry state itself
typedef typename ::boost::mpl::eval_if<
typename ::boost::mpl::is_sequence<T2>::type,
get_fork_owner<T2,library_sm>,
::boost::mpl::eval_if<
typename has_no_automatic_create<T2>::type,
get_owner<T2,library_sm>,
::boost::mpl::identity<T2> >
>::type next_state_type;
// if a guard condition is defined, call it to check that the event is accepted
static bool check_guard(library_sm& fsm,transition_event const& evt)
{
if ( ROW::guard_call(fsm,evt,
::boost::fusion::at_key<current_state_type>(fsm.m_substate_list),
::boost::fusion::at_key<next_state_type>(fsm.m_substate_list),
fsm.m_substate_list ))
return true;
return false;
}
// Take the transition action and return the next state.
static HandledEnum execute(library_sm& fsm, int region_index, int state, transition_event const& evt)
{
BOOST_STATIC_CONSTANT(int, current_state = (get_state_id<stt,current_state_type>::type::value));
BOOST_STATIC_CONSTANT(int, next_state = (get_state_id<stt,next_state_type>::type::value));
BOOST_ASSERT(state == (current_state));
// if T1 is an exit pseudo state, then take the transition only if the pseudo exit state is active
if (has_pseudo_exit<T1>::type::value &&
!is_exit_state_active<T1,get_owner<T1,library_sm> >(fsm))
{
return HANDLED_FALSE;
}
if (!check_guard(fsm,evt))
{
// guard rejected the event, we stay in the current one
return HANDLED_GUARD_REJECT;
}
fsm.m_states[region_index] = active_state_switching::after_guard(current_state,next_state);
// the guard condition has already been checked
execute_exit<current_state_type>
(::boost::fusion::at_key<current_state_type>(fsm.m_substate_list),evt,fsm);
fsm.m_states[region_index] = active_state_switching::after_exit(current_state,next_state);
fsm.m_states[region_index] = active_state_switching::after_action(current_state,next_state);
// and finally the entry method of the new current state
convert_event_and_execute_entry<next_state_type,T2>
(::boost::fusion::at_key<next_state_type>(fsm.m_substate_list),evt,fsm);
fsm.m_states[region_index] = active_state_switching::after_entry(current_state,next_state);
return HANDLED_TRUE;
}
};
// row having only an action method
template<
typename ROW
>
struct a_row_
{
//typedef typename ROW::Source T1;
typedef typename make_entry<typename ROW::Source,library_sm>::type T1;
typedef typename make_exit<typename ROW::Target,library_sm>::type T2;
typedef typename ROW::Evt transition_event;
// if the source is an exit pseudo state, then
// current_state_type becomes the result of get_owner
// meaning the containing SM from which the exit occurs
typedef typename ::boost::mpl::eval_if<
typename has_pseudo_exit<T1>::type,
get_owner<T1,library_sm>,
::boost::mpl::identity<typename ROW::Source> >::type current_state_type;
// if Target is a sequence, then we have a fork and expect a sequence of explicit_entry
// else if Target is an explicit_entry, next_state_type becomes the result of get_owner
// meaning the containing SM if the row is "outside" the containing SM or else the explicit_entry state itself
typedef typename ::boost::mpl::eval_if<
typename ::boost::mpl::is_sequence<T2>::type,
get_fork_owner<T2,library_sm>,
::boost::mpl::eval_if<
typename has_no_automatic_create<T2>::type,
get_owner<T2,library_sm>,
::boost::mpl::identity<T2> >
>::type next_state_type;
// Take the transition action and return the next state.
static HandledEnum execute(library_sm& fsm, int region_index, int state, transition_event const& evt)
{
BOOST_STATIC_CONSTANT(int, current_state = (get_state_id<stt,current_state_type>::type::value));
BOOST_STATIC_CONSTANT(int, next_state = (get_state_id<stt,next_state_type>::type::value));
BOOST_ASSERT(state == (current_state));
// if T1 is an exit pseudo state, then take the transition only if the pseudo exit state is active
if (has_pseudo_exit<T1>::type::value &&
!is_exit_state_active<T1,get_owner<T1,library_sm> >(fsm))
{
return HANDLED_FALSE;
}
fsm.m_states[region_index] = active_state_switching::after_guard(current_state,next_state);
// no need to check the guard condition
// first call the exit method of the current state
execute_exit<current_state_type>
(::boost::fusion::at_key<current_state_type>(fsm.m_substate_list),evt,fsm);
fsm.m_states[region_index] = active_state_switching::after_exit(current_state,next_state);
// then call the action method
HandledEnum res = ROW::action_call(fsm,evt,
::boost::fusion::at_key<current_state_type>(fsm.m_substate_list),
::boost::fusion::at_key<next_state_type>(fsm.m_substate_list),
fsm.m_substate_list);
fsm.m_states[region_index] = active_state_switching::after_action(current_state,next_state);
// and finally the entry method of the new current state
convert_event_and_execute_entry<next_state_type,T2>
(::boost::fusion::at_key<next_state_type>(fsm.m_substate_list),evt,fsm);
fsm.m_states[region_index] = active_state_switching::after_entry(current_state,next_state);
return res;
}
};
// row having no guard condition or action, simply transitions
template<
typename ROW
>
struct _row_
{
//typedef typename ROW::Source T1;
typedef typename make_entry<typename ROW::Source,library_sm>::type T1;
typedef typename make_exit<typename ROW::Target,library_sm>::type T2;
typedef typename ROW::Evt transition_event;
// if the source is an exit pseudo state, then
// current_state_type becomes the result of get_owner
// meaning the containing SM from which the exit occurs
typedef typename ::boost::mpl::eval_if<
typename has_pseudo_exit<T1>::type,
get_owner<T1,library_sm>,
::boost::mpl::identity<typename ROW::Source> >::type current_state_type;
// if Target is a sequence, then we have a fork and expect a sequence of explicit_entry
// else if Target is an explicit_entry, next_state_type becomes the result of get_owner
// meaning the containing SM if the row is "outside" the containing SM or else the explicit_entry state itself
typedef typename ::boost::mpl::eval_if<
typename ::boost::mpl::is_sequence<T2>::type,
get_fork_owner<T2,library_sm>,
::boost::mpl::eval_if<
typename has_no_automatic_create<T2>::type,
get_owner<T2,library_sm>,
::boost::mpl::identity<T2> >
>::type next_state_type;
// Take the transition action and return the next state.
static HandledEnum execute(library_sm& fsm, int region_index, int state, transition_event const& evt)
{
BOOST_STATIC_CONSTANT(int, current_state = (get_state_id<stt,current_state_type>::type::value));
BOOST_STATIC_CONSTANT(int, next_state = (get_state_id<stt,next_state_type>::type::value));
BOOST_ASSERT(state == (current_state));
// if T1 is an exit pseudo state, then take the transition only if the pseudo exit state is active
if (has_pseudo_exit<T1>::type::value &&
!is_exit_state_active<T1,get_owner<T1,library_sm> >(fsm))
{
return HANDLED_FALSE;
}
fsm.m_states[region_index] = active_state_switching::after_guard(current_state,next_state);
// first call the exit method of the current state
execute_exit<current_state_type>
(::boost::fusion::at_key<current_state_type>(fsm.m_substate_list),evt,fsm);
fsm.m_states[region_index] = active_state_switching::after_exit(current_state,next_state);
fsm.m_states[region_index] = active_state_switching::after_action(current_state,next_state);
// and finally the entry method of the new current state
convert_event_and_execute_entry<next_state_type,T2>
(::boost::fusion::at_key<next_state_type>(fsm.m_substate_list),evt,fsm);
fsm.m_states[region_index] = active_state_switching::after_entry(current_state,next_state);
return HANDLED_TRUE;
}
};
// "i" rows are rows for internal transitions
template<
typename ROW
>
struct irow_
{
typedef typename make_entry<typename ROW::Source,library_sm>::type T1;
typedef typename make_exit<typename ROW::Target,library_sm>::type T2;
typedef typename ROW::Evt transition_event;
typedef typename ROW::Source current_state_type;
typedef T2 next_state_type;
// if a guard condition is here, call it to check that the event is accepted
static bool check_guard(library_sm& fsm,transition_event const& evt)
{
if ( ROW::guard_call(fsm,evt,
::boost::fusion::at_key<current_state_type>(fsm.m_substate_list),
::boost::fusion::at_key<next_state_type>(fsm.m_substate_list),
fsm.m_substate_list))
return true;
return false;
}
// Take the transition action and return the next state.
static HandledEnum execute(library_sm& fsm, int , int state, transition_event const& evt)
{
BOOST_STATIC_CONSTANT(int, current_state = (get_state_id<stt,current_state_type>::type::value));
BOOST_ASSERT(state == (current_state));
if (!check_guard(fsm,evt))
{
// guard rejected the event, we stay in the current one
return HANDLED_GUARD_REJECT;
}
// call the action method
HandledEnum res = ROW::action_call(fsm,evt,
::boost::fusion::at_key<current_state_type>(fsm.m_substate_list),
::boost::fusion::at_key<next_state_type>(fsm.m_substate_list),
fsm.m_substate_list);
return res;
}
};
// row having only a guard condition
template<
typename ROW
>
struct g_irow_
{
typedef typename make_entry<typename ROW::Source,library_sm>::type T1;
typedef typename make_exit<typename ROW::Target,library_sm>::type T2;
typedef typename ROW::Evt transition_event;
typedef typename ROW::Source current_state_type;
typedef T2 next_state_type;
// if a guard condition is defined, call it to check that the event is accepted
static bool check_guard(library_sm& fsm,transition_event const& evt)
{
if ( ROW::guard_call(fsm,evt,
::boost::fusion::at_key<current_state_type>(fsm.m_substate_list),
::boost::fusion::at_key<next_state_type>(fsm.m_substate_list),
fsm.m_substate_list) )
return true;
return false;
}
// Take the transition action and return the next state.
static HandledEnum execute(library_sm& fsm, int , int state, transition_event const& evt)
{
BOOST_STATIC_CONSTANT(int, current_state = (get_state_id<stt,current_state_type>::type::value));
BOOST_ASSERT(state == (current_state));
if (!check_guard(fsm,evt))
{
// guard rejected the event, we stay in the current one
return HANDLED_GUARD_REJECT;
}
return HANDLED_TRUE;
}
};
// row having only an action method
template<
typename ROW
>
struct a_irow_
{
typedef typename make_entry<typename ROW::Source,library_sm>::type T1;
typedef typename make_exit<typename ROW::Target,library_sm>::type T2;
typedef typename ROW::Evt transition_event;
typedef typename ROW::Source current_state_type;
typedef T2 next_state_type;
// Take the transition action and return the next state.
static HandledEnum execute(library_sm& fsm, int , int state, transition_event const& evt)
{
BOOST_STATIC_CONSTANT(int, current_state = (get_state_id<stt,current_state_type>::type::value));
BOOST_ASSERT(state == (current_state));
// call the action method
HandledEnum res = ROW::action_call(fsm,evt,
::boost::fusion::at_key<current_state_type>(fsm.m_substate_list),
::boost::fusion::at_key<next_state_type>(fsm.m_substate_list),
fsm.m_substate_list);
return res;
}
};
// row simply ignoring the event
template<
typename ROW
>
struct _irow_
{
typedef typename make_entry<typename ROW::Source,library_sm>::type T1;
typedef typename make_exit<typename ROW::Target,library_sm>::type T2;
typedef typename ROW::Evt transition_event;
typedef typename ROW::Source current_state_type;
typedef T2 next_state_type;
// Take the transition action and return the next state.
static HandledEnum execute(library_sm& , int , int state, transition_event const& )
{
BOOST_STATIC_CONSTANT(int, current_state = (get_state_id<stt,current_state_type>::type::value));
BOOST_ASSERT(state == (current_state));
return HANDLED_TRUE;
}
};
// transitions internal to this state machine (no substate involved)
template<
typename ROW,
typename StateType
>
struct internal_
{
typedef StateType current_state_type;
typedef StateType next_state_type;
typedef typename ROW::Evt transition_event;
// if a guard condition is here, call it to check that the event is accepted
static bool check_guard(library_sm& fsm,transition_event const& evt)
{
if ( ROW::guard_call(fsm,evt,
::boost::fusion::at_key<StateType>(fsm.m_substate_list),
::boost::fusion::at_key<StateType>(fsm.m_substate_list),
fsm.m_substate_list) )
return true;
return false;
}
// Take the transition action and return the next state.
static HandledEnum execute(library_sm& fsm, int , int , transition_event const& evt)
{
if (!check_guard(fsm,evt))
{
// guard rejected the event, we stay in the current one
return HANDLED_GUARD_REJECT;
}
// then call the action method
HandledEnum res = ROW::action_call(fsm,evt,
::boost::fusion::at_key<StateType>(fsm.m_substate_list),
::boost::fusion::at_key<StateType>(fsm.m_substate_list),
fsm.m_substate_list);
return res;
}
};
template<
typename ROW
>
struct internal_ <ROW,library_sm>
{
typedef library_sm current_state_type;
typedef library_sm next_state_type;
typedef typename ROW::Evt transition_event;
// if a guard condition is here, call it to check that the event is accepted
static bool check_guard(library_sm& fsm,transition_event const& evt)
{
if ( ROW::guard_call(fsm,evt,
fsm,
fsm,
fsm.m_substate_list) )
return true;
return false;
}
// Take the transition action and return the next state.
static HandledEnum execute(library_sm& fsm, int , int , transition_event const& evt)
{
if (!check_guard(fsm,evt))
{
// guard rejected the event, we stay in the current one
return HANDLED_GUARD_REJECT;
}
// then call the action method
HandledEnum res = ROW::action_call(fsm,evt,
fsm,
fsm,
fsm.m_substate_list);
return res;
}
};
template<
typename ROW,
typename StateType
>
struct a_internal_
{
typedef StateType current_state_type;
typedef StateType next_state_type;
typedef typename ROW::Evt transition_event;
// Take the transition action and return the next state.
static HandledEnum execute(library_sm& fsm, int, int, transition_event const& evt)
{
// then call the action method
HandledEnum res = ROW::action_call(fsm,evt,
::boost::fusion::at_key<StateType>(fsm.m_substate_list),
::boost::fusion::at_key<StateType>(fsm.m_substate_list),
fsm.m_substate_list);
return res;
}
};
template<
typename ROW
>
struct a_internal_ <ROW,library_sm>
{
typedef library_sm current_state_type;
typedef library_sm next_state_type;
typedef typename ROW::Evt transition_event;
// Take the transition action and return the next state.
static HandledEnum execute(library_sm& fsm, int, int, transition_event const& evt)
{
// then call the action method
HandledEnum res = ROW::action_call(fsm,evt,
fsm,
fsm,
fsm.m_substate_list);
return res;
}
};
template<
typename ROW,
typename StateType
>
struct g_internal_
{
typedef StateType current_state_type;
typedef StateType next_state_type;
typedef typename ROW::Evt transition_event;
// if a guard condition is here, call it to check that the event is accepted
static bool check_guard(library_sm& fsm,transition_event const& evt)
{
if ( ROW::guard_call(fsm,evt,
::boost::fusion::at_key<StateType>(fsm.m_substate_list),
::boost::fusion::at_key<StateType>(fsm.m_substate_list),
fsm.m_substate_list) )
return true;
return false;
}
// Take the transition action and return the next state.
static HandledEnum execute(library_sm& fsm, int, int, transition_event const& evt)
{
if (!check_guard(fsm,evt))
{
// guard rejected the event, we stay in the current one
return HANDLED_GUARD_REJECT;
}
return HANDLED_TRUE;
}
};
template<
typename ROW
>
struct g_internal_ <ROW,library_sm>
{
typedef library_sm current_state_type;
typedef library_sm next_state_type;
typedef typename ROW::Evt transition_event;
// if a guard condition is here, call it to check that the event is accepted
static bool check_guard(library_sm& fsm,transition_event const& evt)
{
if ( ROW::guard_call(fsm,evt,
fsm,
fsm,
fsm.m_substate_list) )
return true;
return false;
}
// Take the transition action and return the next state.
static HandledEnum execute(library_sm& fsm, int, int, transition_event const& evt)
{
if (!check_guard(fsm,evt))
{
// guard rejected the event, we stay in the current one
return HANDLED_GUARD_REJECT;
}
return HANDLED_TRUE;
}
};
template<
typename ROW,
typename StateType
>
struct _internal_
{
typedef StateType current_state_type;
typedef StateType next_state_type;
typedef typename ROW::Evt transition_event;
static HandledEnum execute(library_sm& , int , int , transition_event const& )
{
return HANDLED_TRUE;
}
};
template<
typename ROW
>
struct _internal_ <ROW,library_sm>
{
typedef library_sm current_state_type;
typedef library_sm next_state_type;
typedef typename ROW::Evt transition_event;
static HandledEnum execute(library_sm& , int , int , transition_event const& )
{
return HANDLED_TRUE;
}
};
// Template used to form forwarding rows in the transition table for every row of a composite SM
template<
typename T1
, class Evt
>
struct frow
{
typedef T1 current_state_type;
typedef T1 next_state_type;
typedef Evt transition_event;
// tag to find out if a row is a forwarding row
typedef int is_frow;
// Take the transition action and return the next state.
static HandledEnum execute(library_sm& fsm, int region_index, int , transition_event const& evt)
{
// false as second parameter because this event is forwarded from outer fsm
execute_return res =
(::boost::fusion::at_key<current_state_type>(fsm.m_substate_list)).process_event_internal(evt,false);
fsm.m_states[region_index]=get_state_id<stt,T1>::type::value;
return res;
}
// helper metafunctions used by dispatch table and give the frow a new event
// (used to avoid double entries in a table because of base events)
template <class NewEvent>
struct replace_event
{
typedef frow<T1,NewEvent> type;
};
};
template <class Tag, class Transition,class StateType>
struct create_backend_stt
{
};
template <class Transition,class StateType>
struct create_backend_stt<g_row_tag,Transition,StateType>
{
typedef g_row_<Transition> type;
};
template <class Transition,class StateType>
struct create_backend_stt<a_row_tag,Transition,StateType>
{
typedef a_row_<Transition> type;
};
template <class Transition,class StateType>
struct create_backend_stt<_row_tag,Transition,StateType>
{
typedef _row_<Transition> type;
};
template <class Transition,class StateType>
struct create_backend_stt<row_tag,Transition,StateType>
{
typedef row_<Transition> type;
};
// internal transitions
template <class Transition,class StateType>
struct create_backend_stt<g_irow_tag,Transition,StateType>
{
typedef g_irow_<Transition> type;
};
template <class Transition,class StateType>
struct create_backend_stt<a_irow_tag,Transition,StateType>
{
typedef a_irow_<Transition> type;
};
template <class Transition,class StateType>
struct create_backend_stt<irow_tag,Transition,StateType>
{
typedef irow_<Transition> type;
};
template <class Transition,class StateType>
struct create_backend_stt<_irow_tag,Transition,StateType>
{
typedef _irow_<Transition> type;
};
template <class Transition,class StateType>
struct create_backend_stt<sm_a_i_row_tag,Transition,StateType>
{
typedef a_internal_<Transition,StateType> type;
};
template <class Transition,class StateType>
struct create_backend_stt<sm_g_i_row_tag,Transition,StateType>
{
typedef g_internal_<Transition,StateType> type;
};
template <class Transition,class StateType>
struct create_backend_stt<sm_i_row_tag,Transition,StateType>
{
typedef internal_<Transition,StateType> type;
};
template <class Transition,class StateType>
struct create_backend_stt<sm__i_row_tag,Transition,StateType>
{
typedef _internal_<Transition,StateType> type;
};
template <class Transition,class StateType=void>
struct make_row_tag
{
typedef typename create_backend_stt<typename Transition::row_type_tag,Transition,StateType>::type type;
};
// add to the stt the initial states which could be missing (if not being involved in a transition)
template <class BaseType, class stt_simulated = typename BaseType::transition_table>
struct create_real_stt
{
//typedef typename BaseType::transition_table stt_simulated;
typedef typename ::boost::mpl::fold<
stt_simulated,mpl::vector0<>,
::boost::mpl::push_back< ::boost::mpl::placeholders::_1,
make_row_tag< ::boost::mpl::placeholders::_2 , BaseType > >
>::type type;
};
template <class Table,class Intermediate,class StateType>
struct add_forwarding_row_helper
{
typedef typename generate_event_set<Table>::type all_events;
typedef typename ::boost::mpl::fold<
all_events, Intermediate,
::boost::mpl::push_back< ::boost::mpl::placeholders::_1,
frow<StateType, ::boost::mpl::placeholders::_2> > >::type type;
};
// gets the transition table from a composite and make from it a forwarding row
template <class StateType,class IsComposite>
struct get_internal_transition_table
{
// first get the table of a composite
typedef typename recursive_get_transition_table<StateType>::type original_table;
// we now look for the events the composite has in its internal transitions
// the internal ones are searched recursively in sub-sub... states
// we go recursively because our states can also have internal tables or substates etc.
typedef typename recursive_get_internal_transition_table<StateType, ::boost::mpl::true_>::type recursive_istt;
typedef typename ::boost::mpl::fold<
recursive_istt,::boost::mpl::vector0<>,
::boost::mpl::push_back< ::boost::mpl::placeholders::_1,
make_row_tag< ::boost::mpl::placeholders::_2 , StateType> >
>::type recursive_istt_with_tag;
typedef typename ::boost::mpl::insert_range< original_table, typename ::boost::mpl::end<original_table>::type,
recursive_istt_with_tag>::type table_with_all_events;
// and add for every event a forwarding row
typedef typename ::boost::mpl::eval_if<
typename CompilePolicy::add_forwarding_rows,
add_forwarding_row_helper<table_with_all_events,::boost::mpl::vector0<>,StateType>,
::boost::mpl::identity< ::boost::mpl::vector0<> >
>::type type;
};
template <class StateType>
struct get_internal_transition_table<StateType, ::boost::mpl::false_ >
{
typedef typename create_real_stt<StateType, typename StateType::internal_transition_table >::type type;
};
// typedefs used internally
typedef typename create_real_stt<Derived>::type real_transition_table;
typedef typename create_stt<library_sm>::type stt;
typedef typename get_initial_states<typename Derived::initial_state>::type initial_states;
typedef typename generate_state_set<stt>::type state_list;
typedef typename HistoryPolicy::template apply<nr_regions::value>::type concrete_history;
typedef typename ::boost::fusion::result_of::as_set<state_list>::type substate_list;
typedef typename ::boost::msm::back::generate_event_set<
typename create_real_stt<library_sm, typename library_sm::internal_transition_table >::type
>::type processable_events_internal_table;
// extends the transition table with rows from composite states
template <class Composite>
struct extend_table
{
// add the init states
//typedef typename create_stt<Composite>::type stt;
typedef typename Composite::stt Stt;
// add the internal events defined in the internal_transition_table
// Note: these are added first because they must have a lesser prio
// than the deeper transitions in the sub regions
// table made of a stt + internal transitions of composite
typedef typename ::boost::mpl::fold<
typename Composite::internal_transition_table,::boost::mpl::vector0<>,
::boost::mpl::push_back< ::boost::mpl::placeholders::_1,
make_row_tag< ::boost::mpl::placeholders::_2 , Composite> >
>::type internal_stt;
typedef typename ::boost::mpl::insert_range<
Stt,
typename ::boost::mpl::end<Stt>::type,
internal_stt
//typename get_internal_transition_table<Composite, ::boost::mpl::true_ >::type
>::type stt_plus_internal;
// for every state, add its transition table (if any)
// transformed as frow
typedef typename ::boost::mpl::fold<state_list,stt_plus_internal,
::boost::mpl::insert_range<
::boost::mpl::placeholders::_1,
::boost::mpl::end< ::boost::mpl::placeholders::_1>,
get_internal_transition_table<
::boost::mpl::placeholders::_2,
is_composite_state< ::boost::mpl::placeholders::_2> > >
>::type type;
};
// extend the table with tables from composite states
typedef typename extend_table<library_sm>::type complete_table;
// build a sequence of regions
typedef typename get_regions_as_sequence<typename Derived::initial_state>::type seq_initial_states;
// Member functions
// start the state machine (calls entry of the initial state)
void start()
{
// reinitialize our list of currently active states with the ones defined in Derived::initial_state
::boost::mpl::for_each< seq_initial_states, ::boost::msm::wrap<mpl::placeholders::_1> >
(init_states(m_states));
// call on_entry on this SM
(static_cast<Derived*>(this))->on_entry(fsm_initial_event(),*this);
::boost::mpl::for_each<initial_states, boost::msm::wrap<mpl::placeholders::_1> >
(call_init<fsm_initial_event>(fsm_initial_event(),this));
// give a chance to handle an anonymous (eventless) transition
handle_eventless_transitions_helper<library_sm> eventless_helper(this,true);
eventless_helper.process_completion_event();
}
// start the state machine (calls entry of the initial state passing incomingEvent to on_entry's)
template <class Event>
void start(Event const& incomingEvent)
{
// reinitialize our list of currently active states with the ones defined in Derived::initial_state
::boost::mpl::for_each< seq_initial_states, ::boost::msm::wrap<mpl::placeholders::_1> >
(init_states(m_states));
// call on_entry on this SM
(static_cast<Derived*>(this))->on_entry(incomingEvent,*this);
::boost::mpl::for_each<initial_states, boost::msm::wrap<mpl::placeholders::_1> >
(call_init<Event>(incomingEvent,this));
// give a chance to handle an anonymous (eventless) transition
handle_eventless_transitions_helper<library_sm> eventless_helper(this,true);
eventless_helper.process_completion_event();
}
// stop the state machine (calls exit of the current state)
void stop()
{
do_exit(fsm_final_event(),*this);
}
// stop the state machine (calls exit of the current state passing finalEvent to on_exit's)
template <class Event>
void stop(Event const& finalEvent)
{
do_exit(finalEvent,*this);
}
// Main function used by clients of the derived FSM to make transitions.
template<class Event>
execute_return process_event(Event const& evt)
{
return process_event_internal(evt,true);
}
template <class EventType>
void enqueue_event_helper(EventType const& evt, ::boost::mpl::false_ const &)
{
execute_return (library_sm::*pf) (EventType const& evt) =
&library_sm::process_event;
transition_fct f = ::boost::bind(pf,this,evt);
m_events_queue.m_events_queue.push_back(f);
}
template <class EventType>
void enqueue_event_helper(EventType const& evt, ::boost::mpl::true_ const &)
{
// no queue
}
void execute_queued_events_helper(::boost::mpl::false_ const &)
{
transition_fct to_call = m_events_queue.m_events_queue.front();
m_events_queue.m_events_queue.pop_front();
to_call();
}
void execute_queued_events_helper(::boost::mpl::true_ const &)
{
// no queue required
}
// enqueues an event in the message queue
// call execute_queued_events to process all queued events.
// Be careful if you do this during event processing, the event will be processed immediately
// and not kept in the queue
template <class EventType>
void enqueue_event(EventType const& evt)
{
enqueue_event_helper<EventType>(evt, typename is_no_message_queue<library_sm>::type());
}
// empty the queue and process events
void execute_queued_events()
{
execute_queued_events_helper(typename is_no_message_queue<library_sm>::type());
}
typename events_queue_t::size_type get_message_queue_size() const
{
return m_events_queue.m_events_queue.size();
}
events_queue_t& get_message_queue()
{
return m_events_queue.m_events_queue;
}
const events_queue_t& get_message_queue() const
{
return m_events_queue.m_events_queue;
}
deferred_events_queue_t& get_deferred_queue()
{
return m_deferred_events_queue.m_deferred_events_queue;
}
const deferred_events_queue_t& get_deferred_queue() const
{
return m_deferred_events_queue.m_deferred_events_queue;
}
// Getter that returns the current state of the FSM
const int* current_state() const
{
return this->m_states;
}
template <class Archive>
struct serialize_state
{
serialize_state(Archive& ar):ar_(ar){}
template<typename T>
typename ::boost::enable_if<
typename ::boost::mpl::or_<
typename has_do_serialize<T>::type,
typename is_composite_state<T>::type
>::type
,void
>::type
operator()(T& t) const
{
ar_ & t;
}
template<typename T>
typename ::boost::disable_if<
typename ::boost::mpl::or_<
typename has_do_serialize<T>::type,
typename is_composite_state<T>::type
>::type
,void
>::type
operator()(T& t) const
{
// no state to serialize
}
Archive& ar_;
};
template<class Archive>
void serialize(Archive & ar, const unsigned int)
{
// invoke serialization of the base class
(serialize_state<Archive>(ar))(boost::serialization::base_object<Derived>(*this));
// now our attributes
ar & m_states;
// queues cannot be serialized => skip
ar & m_history;
ar & m_event_processing;
ar & m_is_included;
// visitors cannot be serialized => skip
::boost::fusion::for_each(m_substate_list, serialize_state<Archive>(ar));
}
// linearly search for the state with the given id
struct get_state_id_helper
{
get_state_id_helper(int id,const BaseState** res,const library_sm* self_):
result_state(res),searched_id(id),self(self_) {}
template <class StateType>
void operator()(boost::msm::wrap<StateType> const&)
{
// look for the state id until found
BOOST_STATIC_CONSTANT(int, id = (get_state_id<stt,StateType>::value));
if (!*result_state && (id == searched_id))
{
*result_state = &::boost::fusion::at_key<StateType>(self->m_substate_list);
}
}
const BaseState** result_state;
int searched_id;
const library_sm* self;
};
// return the state whose id is passed or 0 if not found
// caution if you need this, you probably need polymorphic states
// complexity: O(number of states)
BaseState* get_state_by_id(int id)
{
const BaseState* result_state=0;
::boost::mpl::for_each<state_list,
::boost::msm::wrap< ::boost::mpl::placeholders::_1> > (get_state_id_helper(id,&result_state,this));
return const_cast<BaseState*>(result_state);
}
const BaseState* get_state_by_id(int id) const
{
const BaseState* result_state=0;
::boost::mpl::for_each<state_list,
::boost::msm::wrap< ::boost::mpl::placeholders::_1> > (get_state_id_helper(id,&result_state,this));
return result_state;
}
// true if the sm is used in another sm
bool is_contained() const
{
return m_is_included;
}
// get the history policy class
concrete_history& get_history()
{
return m_history;
}
concrete_history const& get_history() const
{
return m_history;
}
// get a state (const version)
// as a pointer
template <class State>
typename ::boost::enable_if<typename ::boost::is_pointer<State>::type,State >::type
get_state(::boost::msm::back::dummy<0> = 0) const
{
return const_cast<State >
(&
(::boost::fusion::at_key<
typename ::boost::remove_const<typename ::boost::remove_pointer<State>::type>::type>(m_substate_list)));
}
// as a reference
template <class State>
typename ::boost::enable_if<typename ::boost::is_reference<State>::type,State >::type
get_state(::boost::msm::back::dummy<1> = 0) const
{
return const_cast<State >
( ::boost::fusion::at_key<
typename ::boost::remove_const<typename ::boost::remove_reference<State>::type>::type>(m_substate_list) );
}
// get a state (non const version)
// as a pointer
template <class State>
typename ::boost::enable_if<typename ::boost::is_pointer<State>::type,State >::type
get_state(::boost::msm::back::dummy<0> = 0)
{
return &(static_cast<typename boost::add_reference<typename ::boost::remove_pointer<State>::type>::type >
(::boost::fusion::at_key<typename ::boost::remove_pointer<State>::type>(m_substate_list)));
}
// as a reference
template <class State>
typename ::boost::enable_if<typename ::boost::is_reference<State>::type,State >::type
get_state(::boost::msm::back::dummy<1> = 0)
{
return ::boost::fusion::at_key<typename ::boost::remove_reference<State>::type>(m_substate_list);
}
// checks if a flag is active using the BinaryOp as folding function
template <class Flag,class BinaryOp>
bool is_flag_active() const
{
flag_handler* flags_entries = get_entries_for_flag<Flag>();
bool res = (*flags_entries[ m_states[0] ])(*this);
for (int i = 1; i < nr_regions::value ; ++i)
{
res = typename BinaryOp::type() (res,(*flags_entries[ m_states[i] ])(*this));
}
return res;
}
// checks if a flag is active using no binary op if 1 region, or OR if > 1 regions
template <class Flag>
bool is_flag_active() const
{
return FlagHelper<Flag,(nr_regions::value>1)>::helper(*this,get_entries_for_flag<Flag>());
}
// visit the currently active states (if these are defined as visitable
// by implementing accept)
void visit_current_states()
{
for (int i=0; i<nr_regions::value;++i)
{
m_visitors.execute(m_states[i]);
}
}
#define MSM_VISIT_STATE_SUB(z, n, unused) ARG ## n vis ## n
#define MSM_VISIT_STATE_EXECUTE(z, n, unused) \
template <BOOST_PP_ENUM_PARAMS(n, class ARG)> \
void visit_current_states(BOOST_PP_ENUM(n, MSM_VISIT_STATE_SUB, ~ ) ) \
{ \
for (int i=0; i<nr_regions::value;++i) \
{ \
m_visitors.execute(m_states[i],BOOST_PP_ENUM_PARAMS(n,vis)); \
} \
}
BOOST_PP_REPEAT_FROM_TO(1,BOOST_PP_ADD(BOOST_MSM_VISITOR_ARG_SIZE,1), MSM_VISIT_STATE_EXECUTE, ~)
#undef MSM_VISIT_STATE_EXECUTE
#undef MSM_VISIT_STATE_SUB
// puts the given event into the deferred queue
template <class Event>
void defer_event(Event const& e)
{
// to call this function, you need either a state with a deferred_events typedef
// or that the fsm provides the activate_deferred_events typedef
BOOST_MPL_ASSERT(( has_fsm_deferred_events<library_sm> ));
execute_return (library_sm::*pf) (Event const& evt)= &library_sm::process_event;
Event temp (e);
::boost::function<execute_return () > f= ::boost::bind(pf, this,temp);
post_deferred_event(f);
}
protected: // interface for the derived class
// helper used to fill the initial states
struct init_states
{
init_states(int* const init):m_initial_states(init),m_index(-1){}
// History initializer function object, used with mpl::for_each
template <class State>
void operator()(::boost::msm::wrap<State> const&)
{
m_initial_states[++m_index]=get_state_id<stt,State>::type::value;
}
int* const m_initial_states;
int m_index;
};
public:
struct update_state
{
update_state(substate_list& to_overwrite_):to_overwrite(&to_overwrite_){}
template<typename StateType>
void operator()(StateType const& astate) const
{
::boost::fusion::at_key<StateType>(*to_overwrite)=astate;
}
substate_list* to_overwrite;
};
template <class Expr>
void set_states(Expr const& expr)
{
::boost::fusion::for_each(
::boost::fusion::as_vector(FoldToList()(expr, boost::fusion::nil())),update_state(this->m_substate_list));
}
// Construct with the default initial states
state_machine<A0,A1,A2,A3,A4 >()
:Derived()
,m_events_queue()
,m_deferred_events_queue()
,m_history()
,m_event_processing(false)
,m_is_included(false)
,m_visitors()
,m_substate_list()
{
// initialize our list of states with the ones defined in Derived::initial_state
::boost::mpl::for_each< seq_initial_states, ::boost::msm::wrap<mpl::placeholders::_1> >
(init_states(m_states));
m_history.set_initial_states(m_states);
// create states
fill_states(this);
}
template <class Expr>
state_machine<A0,A1,A2,A3,A4 >
(Expr const& expr,typename ::boost::enable_if<typename ::boost::proto::is_expr<Expr>::type >::type* =0)
:Derived()
,m_events_queue()
,m_deferred_events_queue()
,m_history()
,m_event_processing(false)
,m_is_included(false)
,m_visitors()
,m_substate_list()
{
BOOST_MPL_ASSERT_MSG(
( ::boost::proto::matches<Expr, FoldToList>::value),
THE_STATES_EXPRESSION_PASSED_DOES_NOT_MATCH_GRAMMAR,
(FoldToList));
// initialize our list of states with the ones defined in Derived::initial_state
::boost::mpl::for_each< seq_initial_states, ::boost::msm::wrap<mpl::placeholders::_1> >
(init_states(m_states));
m_history.set_initial_states(m_states);
// create states
set_states(expr);
fill_states(this);
}
// Construct with the default initial states and some default argument(s)
#define MSM_CONSTRUCTOR_HELPER_EXECUTE_SUB(z, n, unused) ARG ## n t ## n
#define MSM_CONSTRUCTOR_HELPER_EXECUTE(z, n, unused) \
template <BOOST_PP_ENUM_PARAMS(n, class ARG)> \
state_machine<A0,A1,A2,A3,A4 \
>(BOOST_PP_ENUM(n, MSM_CONSTRUCTOR_HELPER_EXECUTE_SUB, ~ ), \
typename ::boost::disable_if<typename ::boost::proto::is_expr<ARG0>::type >::type* =0 ) \
:Derived(BOOST_PP_ENUM_PARAMS(n,t)) \
,m_events_queue() \
,m_deferred_events_queue() \
,m_history() \
,m_event_processing(false) \
,m_is_included(false) \
,m_visitors() \
,m_substate_list() \
{ \
::boost::mpl::for_each< seq_initial_states, ::boost::msm::wrap<mpl::placeholders::_1> > \
(init_states(m_states)); \
m_history.set_initial_states(m_states); \
fill_states(this); \
} \
template <class Expr,BOOST_PP_ENUM_PARAMS(n, class ARG)> \
state_machine<A0,A1,A2,A3,A4 \
>(Expr const& expr,BOOST_PP_ENUM(n, MSM_CONSTRUCTOR_HELPER_EXECUTE_SUB, ~ ), \
typename ::boost::enable_if<typename ::boost::proto::is_expr<Expr>::type >::type* =0 ) \
:Derived(BOOST_PP_ENUM_PARAMS(n,t)) \
,m_events_queue() \
,m_deferred_events_queue() \
,m_history() \
,m_event_processing(false) \
,m_is_included(false) \
,m_visitors() \
,m_substate_list() \
{ \
BOOST_MPL_ASSERT_MSG( \
( ::boost::proto::matches<Expr, FoldToList>::value), \
THE_STATES_EXPRESSION_PASSED_DOES_NOT_MATCH_GRAMMAR, \
(FoldToList)); \
::boost::mpl::for_each< seq_initial_states, ::boost::msm::wrap<mpl::placeholders::_1> > \
(init_states(m_states)); \
m_history.set_initial_states(m_states); \
set_states(expr); \
fill_states(this); \
}
BOOST_PP_REPEAT_FROM_TO(1,BOOST_PP_ADD(BOOST_MSM_CONSTRUCTOR_ARG_SIZE,1), MSM_CONSTRUCTOR_HELPER_EXECUTE, ~)
#undef MSM_CONSTRUCTOR_HELPER_EXECUTE
#undef MSM_CONSTRUCTOR_HELPER_EXECUTE_SUB
// assignment operator using the copy policy to decide if non_copyable, shallow or deep copying is necessary
library_sm& operator= (library_sm const& rhs)
{
if (this != &rhs)
{
Derived::operator=(rhs);
// initialize our list of states with the ones defined in Derived::initial_state
fill_states(this);
do_copy(rhs);
}
return *this;
}
state_machine<A0,A1,A2,A3,A4>
(library_sm const& rhs)
: Derived(rhs)
{
if (this != &rhs)
{
// initialize our list of states with the ones defined in Derived::initial_state
fill_states(this);
do_copy(rhs);
}
}
// the following 2 functions handle the terminate/interrupt states handling
// if one of these states is found, the first one is used
template <class Event>
bool is_event_handling_blocked_helper( ::boost::mpl::true_ const &)
{
// if the state machine is terminated, do not handle any event
if (is_flag_active< ::boost::msm::TerminateFlag>())
return true;
// if the state machine is interrupted, do not handle any event
// unless the event is the end interrupt event
if ( is_flag_active< ::boost::msm::InterruptedFlag>() &&
!is_flag_active< ::boost::msm::EndInterruptFlag<Event> >())
return true;
return false;
}
// otherwise simple handling, no flag => continue
template <class Event>
bool is_event_handling_blocked_helper( ::boost::mpl::false_ const &)
{
// no terminate/interrupt states detected
return false;
}
// the following functions handle pre/post-process handling of a message queue
template <class StateType,class EventType>
bool do_pre_msg_queue_helper(EventType const& evt, ::boost::mpl::true_ const &)
{
// no message queue needed
return true;
}
template <class StateType,class EventType>
bool do_pre_msg_queue_helper(EventType const& evt, ::boost::mpl::false_ const &)
{
execute_return (library_sm::*pf) (EventType const& evt) =
&library_sm::process_event;
// if we are already processing an event
if (m_event_processing)
{
// event has to be put into the queue
transition_fct f = ::boost::bind(pf,this,evt);
m_events_queue.m_events_queue.push_back(f);
return false;
}
// event can be handled, processing
m_event_processing = true;
return true;
}
void do_post_msg_queue_helper( ::boost::mpl::true_ const &)
{
// no message queue needed
}
void do_post_msg_queue_helper( ::boost::mpl::false_ const &)
{
m_event_processing = false;
process_message_queue(this);
}
// the following 2 functions handle the processing either with a try/catch protection or without
template <class StateType,class EventType>
HandledEnum do_process_helper(EventType const& evt, ::boost::mpl::true_ const &, bool is_direct_call)
{
return this->do_process_event(evt,is_direct_call);
}
template <class StateType,class EventType>
HandledEnum do_process_helper(EventType const& evt, ::boost::mpl::false_ const &, bool is_direct_call)
{
try
{
return this->do_process_event(evt,is_direct_call);
}
catch (std::exception& e)
{
// give a chance to the concrete state machine to handle
this->exception_caught(evt,*this,e);
}
return HANDLED_FALSE;
}
// handling of deferred events
// if none is found in the SM, take the following empty main version
template <class StateType, class Enable = int>
struct handle_defer_helper
{
handle_defer_helper(deferred_msg_queue_helper<library_sm>& ){}
void do_pre_handle_deferred()
{
}
void do_post_handle_deferred(HandledEnum)
{
}
};
// otherwise the standard version handling the deferred events
template <class StateType>
struct handle_defer_helper
<StateType, typename enable_if< typename ::boost::msm::back::has_fsm_deferred_events<StateType>::type,int >::type>
{
handle_defer_helper(deferred_msg_queue_helper<library_sm>& a_queue):
events_queue(a_queue),next_deferred_event(){}
void do_pre_handle_deferred()
{
}
void do_post_handle_deferred(HandledEnum handled)
{
if (handled == HANDLED_TRUE)
{
// a transition has been taken, it makes sense again to try processing waiting deferred events
// reset all events to not tested
for (std::size_t i = 0; i < events_queue.m_deferred_events_queue.size(); ++i)
{
events_queue.m_deferred_events_queue[i].second=false;
}
// test first event
if (!events_queue.m_deferred_events_queue.empty())
{
deferred_fct next = events_queue.m_deferred_events_queue.front().first;
events_queue.m_deferred_events_queue.pop_front();
next();
}
}
else
{
// look for next deferred event, if any
typename deferred_events_queue_t::iterator it =
std::find_if(events_queue.m_deferred_events_queue.begin(),
events_queue.m_deferred_events_queue.end(),
boost::bind(&std::pair<deferred_fct,bool>::second, _1) == false);
if (it != events_queue.m_deferred_events_queue.end())
{
(*it).second = true;
deferred_fct next = (*it).first;
events_queue.m_deferred_events_queue.erase(it);
next();
}
}
}
private:
deferred_msg_queue_helper<library_sm>& events_queue;
deferred_fct next_deferred_event;
};
// handling of eventless transitions
// if none is found in the SM, nothing to do
template <class StateType, class Enable = void>
struct handle_eventless_transitions_helper
{
handle_eventless_transitions_helper(library_sm* , bool ){}
void process_completion_event(){}
};
// otherwise
template <class StateType>
struct handle_eventless_transitions_helper
<StateType, typename enable_if< typename ::boost::msm::back::has_fsm_eventless_transition<StateType>::type >::type>
{
handle_eventless_transitions_helper(library_sm* self_, bool handled_):self(self_),handled(handled_){}
void process_completion_event()
{
typedef typename ::boost::mpl::deref<
typename ::boost::mpl::begin<
typename find_completion_events<StateType>::type
>::type
>::type first_completion_event;
if (handled)
{
self->process_event(first_completion_event() );
}
}
private:
library_sm* self;
bool handled;
};
// helper class called in case the event to process has been found in the fsm's internal stt and is therefore processable
template<class Event>
struct process_fsm_internal_table
{
typedef typename ::boost::mpl::has_key<processable_events_internal_table,Event>::type is_event_processable;
// forward to the correct do_process
static void process(Event const& evt,library_sm* self_,HandledEnum& result)
{
do_process(evt,self_,result,is_event_processable());
}
private:
// the event is processable, let's try!
static void do_process(Event const& evt,library_sm* self_,HandledEnum& result, ::boost::mpl::true_)
{
if (result != HANDLED_TRUE)
{
typedef dispatch_table<library_sm,complete_table,Event,CompilePolicy> table;
HandledEnum res_internal = table::instance.entries[0](*self_, 0, self_->m_states[0], evt);
result = (HandledEnum)((int)result | (int)res_internal);
}
}
// version doing nothing if the event is not in the internal stt and we can save ourselves the time trying to process
static void do_process(Event const& ,library_sm* ,HandledEnum& , ::boost::mpl::false_)
{
// do nothing
}
};
template <class StateType,class Enable=void>
struct region_processing_helper
{
public:
region_processing_helper(library_sm* self_,HandledEnum& result_)
:self(self_),result(result_){}
template<class Event>
void process(Event const& evt)
{
// use this table as if it came directly from the user
typedef dispatch_table<library_sm,complete_table,Event,CompilePolicy> table;
// +1 because index 0 is reserved for this fsm
HandledEnum res =
table::instance.entries[self->m_states[0]+1](
*self, 0, self->m_states[0], evt);
result = (HandledEnum)((int)result | (int)res);
// process the event in the internal table of this fsm if the event is processable (present in the table)
process_fsm_internal_table<Event>::process(evt,self,result);
}
library_sm* self;
HandledEnum& result;
};
// version with visitors
template <class StateType>
struct region_processing_helper<StateType,typename ::boost::enable_if<
::boost::mpl::is_sequence<typename StateType::initial_state> >::type>
{
private:
// process event in one region
template <class region_id,int Dummy=0>
struct In
{
template<class Event>
static void process(Event const& evt,library_sm* self_,HandledEnum& result_)
{
// use this table as if it came directly from the user
typedef dispatch_table<library_sm,complete_table,Event,CompilePolicy> table;
// +1 because index 0 is reserved for this fsm
HandledEnum res =
table::instance.entries[self_->m_states[region_id::value]+1](
*self_, region_id::value , self_->m_states[region_id::value], evt);
result_ = (HandledEnum)((int)result_ | (int)res);
In< ::boost::mpl::int_<region_id::value+1> >::process(evt,self_,result_);
}
};
template <int Dummy>
struct In< ::boost::mpl::int_<nr_regions::value>,Dummy>
{
// end of processing
template<class Event>
static void process(Event const& evt,library_sm* self_,HandledEnum& result_)
{
// process the event in the internal table of this fsm if the event is processable (present in the table)
process_fsm_internal_table<Event>::process(evt,self_,result_);
}
};
public:
region_processing_helper(library_sm* self_,HandledEnum& result_)
:self(self_),result(result_){}
template<class Event>
void process(Event const& evt)
{
In< ::boost::mpl::int_<0> >::process(evt,self,result);
}
library_sm* self;
HandledEnum& result;
};
// Main function used internally to make transitions
// Can only be called for internally (for example in an action method) generated events.
template<class Event>
execute_return process_event_internal(Event const& evt, bool is_direct_call)
{
HandledEnum ret_handled=HANDLED_FALSE;
// if the state machine has terminate or interrupt flags, check them, otherwise skip
if (is_event_handling_blocked_helper<Event>
( ::boost::mpl::bool_<has_fsm_blocking_states<library_sm>::type::value>() ) )
return HANDLED_TRUE;
// if a message queue is needed and processing is on the way
if (!do_pre_msg_queue_helper<Event>
(evt,::boost::mpl::bool_<is_no_message_queue<library_sm>::type::value>()) )
{
// wait for the end of current processing
return HANDLED_TRUE;
}
else
{
// prepare the next deferred event for handling
// if one defer is found in the SM, otherwise skip
handle_defer_helper<library_sm> defer_helper(m_deferred_events_queue);
defer_helper.do_pre_handle_deferred();
// process event
HandledEnum handled = this->do_process_helper<Event>
(evt,::boost::mpl::bool_<is_no_exception_thrown<library_sm>::type::value>(),is_direct_call);
if (handled)
{
ret_handled = handled;
}
// process completion transitions BEFORE any other event in the pool (UML Standard 2.3 §15.3.14)
handle_eventless_transitions_helper<library_sm> eventless_helper(this,(handled == HANDLED_TRUE));
eventless_helper.process_completion_event();
// after handling, take care of the deferred events
defer_helper.do_post_handle_deferred(handled);
// now check if some events were generated in a transition and was not handled
// because of another processing, and if yes, start handling them
do_post_msg_queue_helper(::boost::mpl::bool_<is_no_message_queue<library_sm>::type::value>());
return ret_handled;
}
}
// minimum event processing without exceptions, queues, etc.
template<class Event>
HandledEnum do_process_event(Event const& evt, bool is_direct_call)
{
HandledEnum handled = HANDLED_FALSE;
// dispatch the event to every region
region_processing_helper<Derived> helper(this,handled);
helper.process(evt);
// if the event has not been handled and we have orthogonal zones, then
// generate an error on every active state
// for state machine states contained in other state machines, do not handle
// but let the containing sm handle the error, unless the event was generated in this fsm
// (by calling process_event on this fsm object, is_direct_call == true)
// completion events do not produce an error
if ( (!is_contained() || is_direct_call) && !handled && !is_completion_event<Event>::type::value)
{
for (int i=0; i<nr_regions::value;++i)
{
this->no_transition(evt,*this,this->m_states[i]);
}
}
return handled;
}
// default row arguments for the compilers which accept this
template <class Event>
bool no_guard(Event const&){return true;}
template <class Event>
void no_action(Event const&){}
#ifndef BOOST_NO_RTTI
HandledEnum process_any_event( ::boost::any const& evt);
#endif
private:
// composite accept implementation. First calls accept on the composite, then accept on all its active states.
void composite_accept()
{
this->accept();
this->visit_current_states();
}
#define MSM_COMPOSITE_ACCEPT_SUB(z, n, unused) ARG ## n vis ## n
#define MSM_COMPOSITE_ACCEPT_SUB2(z, n, unused) boost::ref( vis ## n )
#define MSM_COMPOSITE_ACCEPT_EXECUTE(z, n, unused) \
template <BOOST_PP_ENUM_PARAMS(n, class ARG)> \
void composite_accept(BOOST_PP_ENUM(n, MSM_COMPOSITE_ACCEPT_SUB, ~ ) ) \
{ \
this->accept(BOOST_PP_ENUM_PARAMS(n,vis)); \
this->visit_current_states(BOOST_PP_ENUM(n,MSM_COMPOSITE_ACCEPT_SUB2, ~)); \
}
BOOST_PP_REPEAT_FROM_TO(1,BOOST_PP_ADD(BOOST_MSM_VISITOR_ARG_SIZE,1), MSM_COMPOSITE_ACCEPT_EXECUTE, ~)
#undef MSM_COMPOSITE_ACCEPT_EXECUTE
#undef MSM_COMPOSITE_ACCEPT_SUB
#undef MSM_COMPOSITE_ACCEPT_SUB2
// helper used to call the init states at the start of the state machine
template <class Event>
struct call_init
{
call_init(Event const& an_event,library_sm* self_):
evt(an_event),self(self_){}
template <class State>
void operator()(boost::msm::wrap<State> const&)
{
execute_entry(::boost::fusion::at_key<State>(self->m_substate_list),evt,*self);
}
private:
Event const& evt;
library_sm* self;
};
// helper for flag handling. Uses OR by default on orthogonal zones.
template <class Flag,bool orthogonalStates>
struct FlagHelper
{
static bool helper(library_sm const& sm,flag_handler* )
{
// by default we use OR to accumulate the flags
return sm.is_flag_active<Flag,Flag_OR>();
}
};
template <class Flag>
struct FlagHelper<Flag,false>
{
static bool helper(library_sm const& sm,flag_handler* flags_entries)
{
// just one active state, so we can call operator[] with 0
return flags_entries[sm.current_state()[0]](sm);
}
};
// handling of flag
// defines a true and false functions plus a forwarding one for composite states
template <class StateType,class Flag>
struct FlagHandler
{
static bool flag_true(library_sm const& )
{
return true;
}
static bool flag_false(library_sm const& )
{
return false;
}
static bool forward(library_sm const& fsm)
{
return ::boost::fusion::at_key<StateType>(fsm.m_substate_list).template is_flag_active<Flag>();
}
};
template <class Flag>
struct init_flags
{
private:
// helper function, helps hiding the forward function for non-state machines states.
template <class T>
void helper (flag_handler* an_entry,int offset, ::boost::mpl::true_ const & )
{
// composite => forward
an_entry[offset] = &FlagHandler<T,Flag>::forward;
}
template <class T>
void helper (flag_handler* an_entry,int offset, ::boost::mpl::false_ const & )
{
// default no flag
an_entry[offset] = &FlagHandler<T,Flag>::flag_false;
}
// attributes
flag_handler* entries;
public:
init_flags(flag_handler* entries_)
: entries(entries_)
{}
// Flags initializer function object, used with mpl::for_each
template <class StateType>
void operator()( ::boost::msm::wrap<StateType> const& )
{
typedef typename get_flag_list<StateType>::type flags;
typedef typename ::boost::mpl::contains<flags,Flag >::type found;
typedef typename is_composite_state<StateType>::type composite;
BOOST_STATIC_CONSTANT(int, state_id = (get_state_id<stt,StateType>::type::value));
if (found::type::value)
{
// the type defined the flag => true
entries[state_id] = &FlagHandler<StateType,Flag>::flag_true;
}
else
{
// false or forward
typedef typename ::boost::mpl::and_<
typename is_composite_state<StateType>::type,
typename ::boost::mpl::not_<
typename has_non_forwarding_flag<Flag>::type>::type >::type composite_no_forward;
helper<StateType>(entries,state_id,::boost::mpl::bool_<composite_no_forward::type::value>());
}
}
};
// maintains for every flag a static array containing the flag value for every state
template <class Flag>
flag_handler* get_entries_for_flag() const
{
BOOST_STATIC_CONSTANT(int, max_state = (mpl::size<state_list>::value));
static flag_handler flags_entries[max_state];
// build a state list
::boost::mpl::for_each<state_list, boost::msm::wrap< ::boost::mpl::placeholders::_1> >
(init_flags<Flag>(flags_entries));
return flags_entries;
}
// helper used to create a state using the correct constructor
template <class State, class Enable=void>
struct create_state_helper
{
static void set_sm(library_sm* )
{
// state doesn't need its sm
}
};
// create a state requiring a pointer to the state machine
template <class State>
struct create_state_helper<State,typename boost::enable_if<typename State::needs_sm >::type>
{
static void set_sm(library_sm* sm)
{
// create and set the fsm
::boost::fusion::at_key<State>(sm->m_substate_list).set_sm_ptr(sm);
}
};
// main unspecialized helper class
template <class StateType,int ARGS>
struct visitor_args;
#define MSM_VISITOR_ARGS_SUB(z, n, unused) BOOST_PP_CAT(_,BOOST_PP_ADD(n,1))
#define MSM_VISITOR_ARGS_TYPEDEF_SUB(z, n, unused) typename StateType::accept_sig::argument ## n
#define MSM_VISITOR_ARGS_EXECUTE(z, n, unused) \
template <class StateType> \
struct visitor_args<StateType,n> \
{ \
template <class State> \
static typename enable_if_c<!is_composite_state<State>::value,void >::type \
helper (library_sm* sm, \
int id,StateType& astate) \
{ \
sm->m_visitors.insert(id, boost::bind(&StateType::accept, \
::boost::ref(astate) BOOST_PP_COMMA_IF(n) BOOST_PP_ENUM(n, MSM_VISITOR_ARGS_SUB, ~) )); \
} \
template <class State> \
static typename enable_if_c<is_composite_state<State>::value,void >::type \
helper (library_sm* sm, \
int id,StateType& astate) \
{ \
void (StateType::*caccept)(BOOST_PP_ENUM(n, MSM_VISITOR_ARGS_TYPEDEF_SUB, ~ ) ) \
= &StateType::composite_accept; \
sm->m_visitors.insert(id, boost::bind(caccept, \
::boost::ref(astate) BOOST_PP_COMMA_IF(n) BOOST_PP_ENUM(n, MSM_VISITOR_ARGS_SUB, ~) )); \
} \
};
BOOST_PP_REPEAT(BOOST_PP_ADD(BOOST_MSM_VISITOR_ARG_SIZE,1), MSM_VISITOR_ARGS_EXECUTE, ~)
#undef MSM_VISITOR_ARGS_EXECUTE
#undef MSM_VISITOR_ARGS_SUB
// the IBM compiler seems to have problems with nested classes
// the same seems to apply to the Apple version of gcc 4.0.1 (just in case we do for < 4.1)
// and also to MS VC < 8
#if defined (__IBMCPP__) || (__GNUC__ == 4 && __GNUC_MINOR__ < 1) || (defined(_MSC_VER) && (_MSC_VER < 1400))
public:
#endif
template<class ContainingSM>
void set_containing_sm(ContainingSM* sm)
{
m_is_included=true;
::boost::fusion::for_each(m_substate_list,add_state<ContainingSM>(this,sm));
}
#if defined (__IBMCPP__) || (__GNUC__ == 4 && __GNUC_MINOR__ < 1) || (defined(_MSC_VER) && (_MSC_VER < 1400))
private:
#endif
// A function object for use with mpl::for_each that stuffs
// states into the state list.
template<class ContainingSM>
struct add_state
{
add_state(library_sm* self_,ContainingSM* sm)
: self(self_),containing_sm(sm){}
// State is a sub fsm with exit pseudo states and gets a pointer to this fsm, so it can build a callback
template <class StateType>
typename ::boost::enable_if<
typename is_composite_state<StateType>::type,void >::type
new_state_helper(boost::msm::back::dummy<0> = 0) const
{
::boost::fusion::at_key<StateType>(self->m_substate_list).set_containing_sm(containing_sm);
}
// State is a sub fsm without exit pseudo states and does not get a callback to this fsm
// or state is a normal state and needs nothing except creation
template <class StateType>
typename ::boost::enable_if<
typename boost::mpl::and_<typename boost::mpl::not_
<typename is_composite_state<StateType>::type>::type,
typename boost::mpl::not_
<typename is_pseudo_exit<StateType>::type>::type
>::type,void>::type
new_state_helper( ::boost::msm::back::dummy<1> = 0) const
{
//nothing to do
}
// state is exit pseudo state and gets callback to target fsm
template <class StateType>
typename ::boost::enable_if<typename is_pseudo_exit<StateType>::type,void >::type
new_state_helper( ::boost::msm::back::dummy<2> = 0) const
{
execute_return (ContainingSM::*pf) (typename StateType::event const& evt)=
&ContainingSM::process_event;
::boost::function<execute_return (typename StateType::event const&)> fct =
::boost::bind(pf,containing_sm,_1);
::boost::fusion::at_key<StateType>(self->m_substate_list).set_forward_fct(fct);
}
// for every defined state in the sm
template <class State>
void operator()( State const&) const
{
//create a new state with the defined id and type
BOOST_STATIC_CONSTANT(int, state_id = (get_state_id<stt,State>::value));
this->new_state_helper<State>(),
create_state_helper<State>::set_sm(self);
// create a visitor callback
visitor_helper(state_id,::boost::fusion::at_key<State>(self->m_substate_list),
::boost::mpl::bool_<has_accept_sig<State>::type::value>());
}
private:
// support possible use of a visitor if accept_sig is defined
template <class StateType>
void visitor_helper(int id,StateType& astate, ::boost::mpl::true_ const & ) const
{
visitor_args<StateType,StateType::accept_sig::args_number>::
template helper<StateType>(self,id,astate);
}
template <class StateType>
void visitor_helper(int ,StateType& , ::boost::mpl::false_ const &) const
{
// nothing to do
}
library_sm* self;
ContainingSM* containing_sm;
};
// helper used to copy every state if needed
struct copy_helper
{
copy_helper(library_sm* sm):
m_sm(sm){}
template <class StateType>
void operator()( ::boost::msm::wrap<StateType> const& )
{
BOOST_STATIC_CONSTANT(int, state_id = (get_state_id<stt,StateType>::type::value));
// possibly also set the visitor
visitor_helper<StateType>(state_id);
// and for states that keep a pointer to the fsm, reset the pointer
create_state_helper<StateType>::set_sm(m_sm);
}
template <class StateType>
typename ::boost::enable_if<typename has_accept_sig<StateType>::type,void >::type
visitor_helper(int id) const
{
visitor_args<StateType,StateType::accept_sig::args_number>::template helper<StateType>
(m_sm,id,::boost::fusion::at_key<StateType>(m_sm->m_substate_list));
}
template <class StateType>
typename ::boost::disable_if<typename has_accept_sig<StateType>::type,void >::type
visitor_helper(int) const
{
// nothing to do
}
library_sm* m_sm;
};
// helper to copy the active states attribute
template <class region_id,int Dummy=0>
struct region_copy_helper
{
static void do_copy(library_sm* self_,library_sm const& rhs)
{
self_->m_states[region_id::value] = rhs.m_states[region_id::value];
region_copy_helper< ::boost::mpl::int_<region_id::value+1> >::do_copy(self_,rhs);
}
};
template <int Dummy>
struct region_copy_helper< ::boost::mpl::int_<nr_regions::value>,Dummy>
{
// end of processing
static void do_copy(library_sm*,library_sm const& ){}
};
// copy functions for deep copy (no need of a 2nd version for NoCopy as noncopyable handles it)
void do_copy (library_sm const& rhs,
::boost::msm::back::dummy<0> = 0)
{
// deep copy simply assigns the data
region_copy_helper< ::boost::mpl::int_<0> >::do_copy(this,rhs);
m_events_queue = rhs.m_events_queue;
m_deferred_events_queue = rhs.m_deferred_events_queue;
m_history = rhs.m_history;
m_event_processing = rhs.m_event_processing;
m_is_included = rhs.m_is_included;
m_substate_list = rhs.m_substate_list;
// except for the states themselves, which get duplicated
::boost::mpl::for_each<state_list, ::boost::msm::wrap< ::boost::mpl::placeholders::_1> >
(copy_helper(this));
}
// helper used to call the correct entry/exit method
// unfortunately in O(number of states in the sub-sm) but should be better than a virtual call
template<class Event,bool is_entry>
struct entry_exit_helper
{
entry_exit_helper(int id,Event const& e,library_sm* self_):
state_id(id),evt(e),self(self_){}
// helper for entry actions
template <class IsEntry,class State>
typename ::boost::enable_if<typename IsEntry::type,void >::type
helper( ::boost::msm::back::dummy<0> = 0)
{
BOOST_STATIC_CONSTANT(int, id = (get_state_id<stt,State>::value));
if (id == state_id)
{
execute_entry<State>(::boost::fusion::at_key<State>(self->m_substate_list),evt,*self);
}
}
// helper for exit actions
template <class IsEntry,class State>
typename boost::disable_if<typename IsEntry::type,void >::type
helper( ::boost::msm::back::dummy<1> = 0)
{
BOOST_STATIC_CONSTANT(int, id = (get_state_id<stt,State>::value));
if (id == state_id)
{
execute_exit<State>(::boost::fusion::at_key<State>(self->m_substate_list),evt,*self);
}
}
// iterates through all states to find the one to be activated
template <class State>
void operator()( ::boost::msm::wrap<State> const&)
{
entry_exit_helper<Event,is_entry>::template helper< ::boost::mpl::bool_<is_entry>,State >();
}
private:
int state_id;
Event const& evt;
library_sm* self;
};
// helper to start the fsm
template <class region_id,int Dummy=0>
struct region_start_helper
{
template<class Event>
static void do_start(library_sm* self_,Event const& incomingEvent)
{
//forward the event for handling by sub state machines
::boost::mpl::for_each<state_list, ::boost::msm::wrap< ::boost::mpl::placeholders::_1> >
(entry_exit_helper<Event,true>(self_->m_states[region_id::value],incomingEvent,self_));
region_start_helper
< ::boost::mpl::int_<region_id::value+1> >::do_start(self_,incomingEvent);
}
};
template <int Dummy>
struct region_start_helper< ::boost::mpl::int_<nr_regions::value>,Dummy>
{
// end of processing
template<class Event>
static void do_start(library_sm*,Event const& ){}
};
// start for states machines which are themselves embedded in other state machines (composites)
template <class Event>
void internal_start(Event const& incomingEvent)
{
region_start_helper< ::boost::mpl::int_<0> >::do_start(this,incomingEvent);
// give a chance to handle an anonymous (eventless) transition
handle_eventless_transitions_helper<library_sm> eventless_helper(this,true);
eventless_helper.process_completion_event();
}
template <class StateType>
struct find_region_id
{
template <int region,int Dummy=0>
struct In
{
enum {region_index=region};
};
// if the user provides no region, find it!
template<int Dummy>
struct In<-1,Dummy>
{
typedef typename build_orthogonal_regions<
library_sm,
initial_states
>::type all_regions;
enum {region_index= find_region_index<all_regions,StateType>::value };
};
enum {region_index = In<StateType::zone_index>::region_index };
};
// helper used to set the correct state as active state upon entry into a fsm
struct direct_event_start_helper
{
direct_event_start_helper(library_sm* self_):self(self_){}
// this variant is for the standard case, entry due to activation of the containing FSM
template <class EventType,class FsmType>
typename ::boost::disable_if<typename has_direct_entry<EventType>::type,void>::type
operator()(EventType const& evt,FsmType& fsm, ::boost::msm::back::dummy<0> = 0)
{
(static_cast<Derived*>(self))->on_entry(evt,fsm);
self->internal_start(evt);
}
// this variant is for the direct entry case (just one entry, not a sequence of entries)
template <class EventType,class FsmType>
typename ::boost::enable_if<
typename ::boost::mpl::and_<
typename ::boost::mpl::not_< typename is_pseudo_entry<
typename EventType::active_state>::type >::type,
typename ::boost::mpl::and_<typename has_direct_entry<EventType>::type,
typename ::boost::mpl::not_<typename ::boost::mpl::is_sequence
<typename EventType::active_state>::type >::type
>::type>::type,void
>::type
operator()(EventType const& evt,FsmType& fsm, ::boost::msm::back::dummy<1> = 0)
{
(static_cast<Derived*>(self))->on_entry(evt,fsm);
int state_id = get_state_id<stt,typename EventType::active_state::wrapped_entry>::value;
BOOST_STATIC_ASSERT(find_region_id<typename EventType::active_state::wrapped_entry>::region_index >= 0);
BOOST_STATIC_ASSERT(find_region_id<typename EventType::active_state::wrapped_entry>::region_index < nr_regions::value);
// just set the correct zone, the others will be default/history initialized
self->m_states[find_region_id<typename EventType::active_state::wrapped_entry>::region_index] = state_id;
self->internal_start(evt.m_event);
}
// this variant is for the fork entry case (a sequence on entries)
template <class EventType,class FsmType>
typename ::boost::enable_if<
typename ::boost::mpl::and_<
typename ::boost::mpl::not_<
typename is_pseudo_entry<typename EventType::active_state>::type >::type,
typename ::boost::mpl::and_<typename has_direct_entry<EventType>::type,
typename ::boost::mpl::is_sequence<
typename EventType::active_state>::type
>::type>::type,void
>::type
operator()(EventType const& evt,FsmType& fsm, ::boost::msm::back::dummy<2> = 0)
{
(static_cast<Derived*>(self))->on_entry(evt,fsm);
::boost::mpl::for_each<typename EventType::active_state,
::boost::msm::wrap< ::boost::mpl::placeholders::_1> >
(fork_helper<EventType>(self,evt));
// set the correct zones, the others (if any) will be default/history initialized
self->internal_start(evt.m_event);
}
// this variant is for the pseudo state entry case
template <class EventType,class FsmType>
typename ::boost::enable_if<
typename is_pseudo_entry<typename EventType::active_state >::type,void
>::type
operator()(EventType const& evt,FsmType& fsm, ::boost::msm::back::dummy<3> = 0)
{
// entry on the FSM
(static_cast<Derived*>(self))->on_entry(evt,fsm);
int state_id = get_state_id<stt,typename EventType::active_state::wrapped_entry>::value;
BOOST_STATIC_ASSERT(find_region_id<typename EventType::active_state::wrapped_entry>::region_index >= 0);
BOOST_STATIC_ASSERT(find_region_id<typename EventType::active_state::wrapped_entry>::region_index < nr_regions::value);
// given region starts with the entry pseudo state as active state
self->m_states[find_region_id<typename EventType::active_state::wrapped_entry>::region_index] = state_id;
self->internal_start(evt.m_event);
// and we process the transition in the zone of the newly active state
// (entry pseudo states are, according to UML, a state connecting 1 transition outside to 1 inside
self->process_event(evt.m_event);
}
private:
// helper for the fork case, does almost like the direct entry
library_sm* self;
template <class EventType>
struct fork_helper
{
fork_helper(library_sm* self_,EventType const& evt_):
helper_self(self_),helper_evt(evt_){}
template <class StateType>
void operator()( ::boost::msm::wrap<StateType> const& )
{
int state_id = get_state_id<stt,typename StateType::wrapped_entry>::value;
BOOST_STATIC_ASSERT(find_region_id<typename StateType::wrapped_entry>::region_index >= 0);
BOOST_STATIC_ASSERT(find_region_id<typename StateType::wrapped_entry>::region_index < nr_regions::value);
helper_self->m_states[find_region_id<typename StateType::wrapped_entry>::region_index] = state_id;
}
private:
library_sm* helper_self;
EventType const& helper_evt;
};
};
// helper for entry
template <class region_id,int Dummy=0>
struct region_entry_exit_helper
{
template<class Event>
static void do_entry(library_sm* self_,Event const& incomingEvent)
{
self_->m_states[region_id::value] =
self_->m_history.history_entry(incomingEvent)[region_id::value];
region_entry_exit_helper
< ::boost::mpl::int_<region_id::value+1> >::do_entry(self_,incomingEvent);
}
template<class Event>
static void do_exit(library_sm* self_,Event const& incomingEvent)
{
::boost::mpl::for_each<state_list, ::boost::msm::wrap< ::boost::mpl::placeholders::_1> >
(entry_exit_helper<Event,false>(self_->m_states[region_id::value],incomingEvent,self_));
region_entry_exit_helper
< ::boost::mpl::int_<region_id::value+1> >::do_exit(self_,incomingEvent);
}
};
template <int Dummy>
struct region_entry_exit_helper< ::boost::mpl::int_<nr_regions::value>,Dummy>
{
// end of processing
template<class Event>
static void do_entry(library_sm*,Event const& ){}
template<class Event>
static void do_exit(library_sm*,Event const& ){}
};
// entry/exit for states machines which are themselves embedded in other state machines (composites)
template <class Event,class FsmType>
void do_entry(Event const& incomingEvent,FsmType& fsm)
{
// by default we activate the history/init states, can be overwritten by direct_event_start_helper
region_entry_exit_helper< ::boost::mpl::int_<0> >::do_entry(this,incomingEvent);
// block immediate handling of events
m_event_processing = true;
// if the event is generating a direct entry/fork, set the current state(s) to the direct state(s)
direct_event_start_helper(this)(incomingEvent,fsm);
// handle messages which were generated and blocked in the init calls
m_event_processing = false;
process_message_queue(this);
}
template <class Event,class FsmType>
void do_exit(Event const& incomingEvent,FsmType& fsm)
{
// first recursively exit the sub machines
// forward the event for handling by sub state machines
region_entry_exit_helper< ::boost::mpl::int_<0> >::do_exit(this,incomingEvent);
// then call our own exit
(static_cast<Derived*>(this))->on_exit(incomingEvent,fsm);
// give the history a chance to handle this (or not).
m_history.history_exit(this->m_states);
}
// the IBM and VC<8 compilers seem to have problems with the friend declaration of dispatch_table
#if defined (__IBMCPP__) || (defined(_MSC_VER) && (_MSC_VER < 1400))
public:
#endif
// no transition for event.
template <class Event>
static HandledEnum call_no_transition(library_sm& , int , int , Event const& )
{
return HANDLED_FALSE;
}
// no transition for event for internal transitions (not an error).
template <class Event>
static HandledEnum call_no_transition_internal(library_sm& , int , int , Event const& )
{
//// reject to give others a chance to handle
//return HANDLED_GUARD_REJECT;
return HANDLED_FALSE;
}
// called for deferred events. Address set in the dispatch_table at init
template <class Event>
static HandledEnum defer_transition(library_sm& fsm, int , int , Event const& e)
{
fsm.defer_event(e);
return HANDLED_DEFERRED;
}
// called for completion events. Default address set in the dispatch_table at init
// prevents no-transition detection for completion events
template <class Event>
static HandledEnum default_eventless_transition(library_sm&, int, int , Event const&)
{
return HANDLED_FALSE;
}
#if defined (__IBMCPP__) || (defined(_MSC_VER) && (_MSC_VER < 1400))
private:
#endif
// puts a deferred event in the queue
void post_deferred_event(deferred_fct& deferred)
{
m_deferred_events_queue.m_deferred_events_queue.push_back(std::make_pair(deferred,true));
}
// removes one event from the message queue and processes it
template <class StateType>
void process_message_queue(StateType*,
typename ::boost::disable_if<typename is_no_message_queue<StateType>::type,void >::type* = 0)
{
if (!m_events_queue.m_events_queue.empty())
{
transition_fct to_call = m_events_queue.m_events_queue.front();
m_events_queue.m_events_queue.pop_front();
to_call();
}
}
template <class StateType>
void process_message_queue(StateType*,
typename ::boost::enable_if<typename is_no_message_queue<StateType>::type,void >::type* = 0)
{
// nothing to process
}
// helper function. In cases where the event is wrapped (target is a direct entry states)
// we want to send only the real event to on_entry, not the wrapper.
template <class EventType>
static
typename boost::enable_if<typename has_direct_entry<EventType>::type,typename EventType::contained_event const& >::type
remove_direct_entry_event_wrapper(EventType const& evt,boost::msm::back::dummy<0> = 0)
{
return evt.m_event;
}
template <class EventType>
static typename boost::disable_if<typename has_direct_entry<EventType>::type,EventType const& >::type
remove_direct_entry_event_wrapper(EventType const& evt,boost::msm::back::dummy<1> = 0)
{
// identity. No wrapper
return evt;
}
// calls the entry/exit or on_entry/on_exit depending on the state type
// (avoids calling virtually)
// variant for FSMs
template <class StateType,class EventType,class FsmType>
static
typename boost::enable_if<typename is_composite_state<StateType>::type,void >::type
execute_entry(StateType& astate,EventType const& evt,FsmType& fsm,boost::msm::back::dummy<0> = 0)
{
// calls on_entry on the fsm then handles direct entries, fork, entry pseudo state
astate.do_entry(evt,fsm);
}
// variant for states
template <class StateType,class EventType,class FsmType>
static
typename ::boost::disable_if<
typename ::boost::mpl::or_<typename is_composite_state<StateType>::type,
typename is_pseudo_exit<StateType>::type >::type,void >::type
execute_entry(StateType& astate,EventType const& evt,FsmType& fsm, ::boost::msm::back::dummy<1> = 0)
{
// simple call to on_entry
astate.on_entry(remove_direct_entry_event_wrapper(evt),fsm);
}
// variant for exit pseudo states
template <class StateType,class EventType,class FsmType>
static
typename ::boost::enable_if<typename is_pseudo_exit<StateType>::type,void >::type
execute_entry(StateType& astate,EventType const& evt,FsmType& fsm, ::boost::msm::back::dummy<2> = 0)
{
// calls on_entry on the state then forward the event to the transition which should be defined inside the
// contained fsm
astate.on_entry(evt,fsm);
astate.forward_event(evt);
}
template <class StateType,class EventType,class FsmType>
static
typename ::boost::enable_if<typename is_composite_state<StateType>::type,void >::type
execute_exit(StateType& astate,EventType const& evt,FsmType& fsm, ::boost::msm::back::dummy<0> = 0)
{
astate.do_exit(evt,fsm);
}
template <class StateType,class EventType,class FsmType>
static
typename ::boost::disable_if<typename is_composite_state<StateType>::type,void >::type
execute_exit(StateType& astate,EventType const& evt,FsmType& fsm, ::boost::msm::back::dummy<1> = 0)
{
// simple call to on_exit
astate.on_exit(evt,fsm);
}
// helper allowing special handling of direct entries / fork
template <class StateType,class TargetType,class EventType,class FsmType>
static
typename ::boost::disable_if<
typename ::boost::mpl::or_<typename has_explicit_entry_state<TargetType>::type,
::boost::mpl::is_sequence<TargetType> >::type,void>::type
convert_event_and_execute_entry(StateType& astate,EventType const& evt, FsmType& fsm, ::boost::msm::back::dummy<1> = 0)
{
// if the target is a normal state, do the standard entry handling
execute_entry<StateType>(astate,evt,fsm);
}
template <class StateType,class TargetType,class EventType,class FsmType>
static
typename ::boost::enable_if<
typename ::boost::mpl::or_<typename has_explicit_entry_state<TargetType>::type,
::boost::mpl::is_sequence<TargetType> >::type,void >::type
convert_event_and_execute_entry(StateType& astate,EventType const& evt, FsmType& fsm, ::boost::msm::back::dummy<0> = 0)
{
// for the direct entry, pack the event in a wrapper so that we handle it differently during fsm entry
execute_entry(astate,msm::back::direct_entry_event<TargetType,EventType>(evt),fsm);
}
// creates all the states
template <class ContainingSM>
void fill_states(ContainingSM* containing_sm=0)
{
// checks that regions are truly orthogonal
FsmCheckPolicy::template check_orthogonality<library_sm>();
// checks that all states are reachable
FsmCheckPolicy::template check_unreachable_states<library_sm>();
BOOST_STATIC_CONSTANT(int, max_state = (mpl::size<state_list>::value));
// allocate the place without reallocation
m_visitors.fill_visitors(max_state);
::boost::fusion::for_each(m_substate_list,add_state<ContainingSM>(this,containing_sm));
}
private:
template <class StateType,class Enable=void>
struct msg_queue_helper
{
public:
msg_queue_helper():m_events_queue(){}
events_queue_t m_events_queue;
};
template <class StateType>
struct msg_queue_helper<StateType,
typename ::boost::enable_if<typename is_no_message_queue<StateType>::type >::type>
{
};
template <class Fsm,class Stt, class Event, class Compile>
friend struct dispatch_table;
// data members
int m_states[nr_regions::value];
msg_queue_helper<library_sm> m_events_queue;
deferred_msg_queue_helper
<library_sm> m_deferred_events_queue;
concrete_history m_history;
bool m_event_processing;
bool m_is_included;
visitor_fct_helper<BaseState> m_visitors;
substate_list m_substate_list;
};
} } }// boost::msm::back
#endif //BOOST_MSM_BACK_STATEMACHINE_H