boost/multiprecision/tommath.hpp
///////////////////////////////////////////////////////////////////////////////
// Copyright 2011 John Maddock. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_MP_TOMMATH_BACKEND_HPP
#define BOOST_MATH_MP_TOMMATH_BACKEND_HPP
#include <boost/multiprecision/number.hpp>
#include <boost/multiprecision/rational_adapter.hpp>
#include <boost/multiprecision/detail/integer_ops.hpp>
#include <boost/math/special_functions/fpclassify.hpp>
#include <boost/cstdint.hpp>
#include <boost/scoped_array.hpp>
#include <tommath.h>
#include <cmath>
#include <limits>
#include <climits>
namespace boost{ namespace multiprecision{ namespace backends{
namespace detail{
inline void check_tommath_result(unsigned v)
{
if(v != MP_OKAY)
{
BOOST_THROW_EXCEPTION(std::runtime_error(mp_error_to_string(v)));
}
}
}
struct tommath_int;
void eval_multiply(tommath_int& t, const tommath_int& o);
void eval_add(tommath_int& t, const tommath_int& o);
struct tommath_int
{
typedef mpl::list<boost::int32_t, long long> signed_types;
typedef mpl::list<boost::uint32_t, unsigned long long> unsigned_types;
typedef mpl::list<long double> float_types;
tommath_int()
{
detail::check_tommath_result(mp_init(&m_data));
}
tommath_int(const tommath_int& o)
{
detail::check_tommath_result(mp_init_copy(&m_data, const_cast< ::mp_int*>(&o.m_data)));
}
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
tommath_int(tommath_int&& o) BOOST_NOEXCEPT
{
m_data = o.m_data;
o.m_data.dp = 0;
}
tommath_int& operator = (tommath_int&& o)
{
mp_exch(&m_data, &o.data());
return *this;
}
#endif
tommath_int& operator = (const tommath_int& o)
{
if(m_data.dp == 0)
detail::check_tommath_result(mp_init(&m_data));
if(o.m_data.dp)
detail::check_tommath_result(mp_copy(const_cast< ::mp_int*>(&o.m_data), &m_data));
return *this;
}
tommath_int& operator = (unsigned long long i)
{
if(m_data.dp == 0)
detail::check_tommath_result(mp_init(&m_data));
unsigned long long mask = ((1uLL << std::numeric_limits<unsigned>::digits) - 1);
unsigned shift = 0;
::mp_int t;
detail::check_tommath_result(mp_init(&t));
mp_zero(&m_data);
while(i)
{
detail::check_tommath_result(mp_set_int(&t, static_cast<unsigned>(i & mask)));
if(shift)
detail::check_tommath_result(mp_mul_2d(&t, shift, &t));
detail::check_tommath_result((mp_add(&m_data, &t, &m_data)));
shift += std::numeric_limits<unsigned>::digits;
i >>= std::numeric_limits<unsigned>::digits;
}
mp_clear(&t);
return *this;
}
tommath_int& operator = (long long i)
{
BOOST_MP_USING_ABS
if(m_data.dp == 0)
detail::check_tommath_result(mp_init(&m_data));
bool neg = i < 0;
*this = static_cast<unsigned long long>(abs(i));
if(neg)
detail::check_tommath_result(mp_neg(&m_data, &m_data));
return *this;
}
//
// Note that although mp_set_int takes an unsigned long as an argument
// it only sets the first 32-bits to the result, and ignores the rest.
// So use uint32_t as the largest type to pass to this function.
//
tommath_int& operator = (boost::uint32_t i)
{
if(m_data.dp == 0)
detail::check_tommath_result(mp_init(&m_data));
detail::check_tommath_result((mp_set_int(&m_data, i)));
return *this;
}
tommath_int& operator = (boost::int32_t i)
{
if(m_data.dp == 0)
detail::check_tommath_result(mp_init(&m_data));
bool neg = i < 0;
*this = static_cast<boost::uint32_t>(std::abs(i));
if(neg)
detail::check_tommath_result(mp_neg(&m_data, &m_data));
return *this;
}
tommath_int& operator = (long double a)
{
using std::frexp;
using std::ldexp;
using std::floor;
if(m_data.dp == 0)
detail::check_tommath_result(mp_init(&m_data));
if (a == 0) {
detail::check_tommath_result(mp_set_int(&m_data, 0));
return *this;
}
if (a == 1) {
detail::check_tommath_result(mp_set_int(&m_data, 1));
return *this;
}
BOOST_ASSERT(!(boost::math::isinf)(a));
BOOST_ASSERT(!(boost::math::isnan)(a));
int e;
long double f, term;
detail::check_tommath_result(mp_set_int(&m_data, 0u));
::mp_int t;
detail::check_tommath_result(mp_init(&t));
f = frexp(a, &e);
static const int shift = std::numeric_limits<int>::digits - 1;
while(f)
{
// extract int sized bits from f:
f = ldexp(f, shift);
term = floor(f);
e -= shift;
detail::check_tommath_result(mp_mul_2d(&m_data, shift, &m_data));
if(term > 0)
{
detail::check_tommath_result(mp_set_int(&t, static_cast<int>(term)));
detail::check_tommath_result(mp_add(&m_data, &t, &m_data));
}
else
{
detail::check_tommath_result(mp_set_int(&t, static_cast<int>(-term)));
detail::check_tommath_result(mp_sub(&m_data, &t, &m_data));
}
f -= term;
}
if(e > 0)
detail::check_tommath_result(mp_mul_2d(&m_data, e, &m_data));
else if(e < 0)
{
tommath_int t2;
detail::check_tommath_result(mp_div_2d(&m_data, -e, &m_data, &t2.data()));
}
mp_clear(&t);
return *this;
}
tommath_int& operator = (const char* s)
{
//
// We don't use libtommath's own routine because it doesn't error check the input :-(
//
if(m_data.dp == 0)
detail::check_tommath_result(mp_init(&m_data));
std::size_t n = s ? std::strlen(s) : 0;
*this = static_cast<boost::uint32_t>(0u);
unsigned radix = 10;
bool isneg = false;
if(n && (*s == '-'))
{
--n;
++s;
isneg = true;
}
if(n && (*s == '0'))
{
if((n > 1) && ((s[1] == 'x') || (s[1] == 'X')))
{
radix = 16;
s +=2;
n -= 2;
}
else
{
radix = 8;
n -= 1;
}
}
if(n)
{
if(radix == 8 || radix == 16)
{
unsigned shift = radix == 8 ? 3 : 4;
unsigned block_count = DIGIT_BIT / shift;
unsigned block_shift = shift * block_count;
unsigned long long val, block;
while(*s)
{
block = 0;
for(unsigned i = 0; (i < block_count); ++i)
{
if(*s >= '0' && *s <= '9')
val = *s - '0';
else if(*s >= 'a' && *s <= 'f')
val = 10 + *s - 'a';
else if(*s >= 'A' && *s <= 'F')
val = 10 + *s - 'A';
else
val = 400;
if(val > radix)
{
BOOST_THROW_EXCEPTION(std::runtime_error("Unexpected content found while parsing character string."));
}
block <<= shift;
block |= val;
if(!*++s)
{
// final shift is different:
block_shift = (i + 1) * shift;
break;
}
}
detail::check_tommath_result(mp_mul_2d(&data(), block_shift, &data()));
if(data().used)
data().dp[0] |= block;
else
*this = block;
}
}
else
{
// Base 10, we extract blocks of size 10^9 at a time, that way
// the number of multiplications is kept to a minimum:
boost::uint32_t block_mult = 1000000000;
while(*s)
{
boost::uint32_t block = 0;
for(unsigned i = 0; i < 9; ++i)
{
boost::uint32_t val;
if(*s >= '0' && *s <= '9')
val = *s - '0';
else
BOOST_THROW_EXCEPTION(std::runtime_error("Unexpected character encountered in input."));
block *= 10;
block += val;
if(!*++s)
{
static const boost::uint32_t block_multiplier[9] = { 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000 };
block_mult = block_multiplier[i];
break;
}
}
tommath_int t;
t = block_mult;
eval_multiply(*this, t);
t = block;
eval_add(*this, t);
}
}
}
if(isneg)
this->negate();
return *this;
}
std::string str(std::streamsize /*digits*/, std::ios_base::fmtflags f)const
{
BOOST_ASSERT(m_data.dp);
int base = 10;
if((f & std::ios_base::oct) == std::ios_base::oct)
base = 8;
else if((f & std::ios_base::hex) == std::ios_base::hex)
base = 16;
//
// sanity check, bases 8 and 16 are only available for positive numbers:
//
if((base != 10) && m_data.sign)
BOOST_THROW_EXCEPTION(std::runtime_error("Formatted output in bases 8 or 16 is only available for positive numbers"));
int s;
detail::check_tommath_result(mp_radix_size(const_cast< ::mp_int*>(&m_data), base, &s));
boost::scoped_array<char> a(new char[s+1]);
detail::check_tommath_result(mp_toradix_n(const_cast< ::mp_int*>(&m_data), a.get(), base, s+1));
std::string result = a.get();
if((base != 10) && (f & std::ios_base::showbase))
{
int pos = result[0] == '-' ? 1 : 0;
const char* pp = base == 8 ? "0" : "0x";
result.insert(pos, pp);
}
if((f & std::ios_base::showpos) && (result[0] != '-'))
result.insert(0, 1, '+');
return result;
}
~tommath_int()
{
if(m_data.dp)
mp_clear(&m_data);
}
void negate()
{
BOOST_ASSERT(m_data.dp);
mp_neg(&m_data, &m_data);
}
int compare(const tommath_int& o)const
{
BOOST_ASSERT(m_data.dp && o.m_data.dp);
return mp_cmp(const_cast< ::mp_int*>(&m_data), const_cast< ::mp_int*>(&o.m_data));
}
template <class V>
int compare(V v)const
{
tommath_int d;
tommath_int t(*this);
detail::check_tommath_result(mp_shrink(&t.data()));
d = v;
return t.compare(d);
}
::mp_int& data()
{
BOOST_ASSERT(m_data.dp);
return m_data;
}
const ::mp_int& data()const
{
BOOST_ASSERT(m_data.dp);
return m_data;
}
void swap(tommath_int& o)BOOST_NOEXCEPT
{
mp_exch(&m_data, &o.data());
}
protected:
::mp_int m_data;
};
#define BOOST_MP_TOMMATH_BIT_OP_CHECK(x)\
if(SIGN(&x.data()))\
BOOST_THROW_EXCEPTION(std::runtime_error("Bitwise operations on libtommath negative valued integers are disabled as they produce unpredictable results"))
int eval_get_sign(const tommath_int& val);
inline void eval_add(tommath_int& t, const tommath_int& o)
{
detail::check_tommath_result(mp_add(&t.data(), const_cast< ::mp_int*>(&o.data()), &t.data()));
}
inline void eval_subtract(tommath_int& t, const tommath_int& o)
{
detail::check_tommath_result(mp_sub(&t.data(), const_cast< ::mp_int*>(&o.data()), &t.data()));
}
inline void eval_multiply(tommath_int& t, const tommath_int& o)
{
detail::check_tommath_result(mp_mul(&t.data(), const_cast< ::mp_int*>(&o.data()), &t.data()));
}
inline void eval_divide(tommath_int& t, const tommath_int& o)
{
using default_ops::eval_is_zero;
tommath_int temp;
if(eval_is_zero(o))
BOOST_THROW_EXCEPTION(std::overflow_error("Integer division by zero"));
detail::check_tommath_result(mp_div(&t.data(), const_cast< ::mp_int*>(&o.data()), &t.data(), &temp.data()));
}
inline void eval_modulus(tommath_int& t, const tommath_int& o)
{
using default_ops::eval_is_zero;
if(eval_is_zero(o))
BOOST_THROW_EXCEPTION(std::overflow_error("Integer division by zero"));
bool neg = eval_get_sign(t) < 0;
bool neg2 = eval_get_sign(o) < 0;
detail::check_tommath_result(mp_mod(&t.data(), const_cast< ::mp_int*>(&o.data()), &t.data()));
if((neg != neg2) && (eval_get_sign(t) != 0))
{
t.negate();
detail::check_tommath_result(mp_add(&t.data(), const_cast< ::mp_int*>(&o.data()), &t.data()));
t.negate();
}
else if(neg && (t.compare(o) == 0))
{
mp_zero(&t.data());
}
}
template <class UI>
inline void eval_left_shift(tommath_int& t, UI i)
{
detail::check_tommath_result(mp_mul_2d(&t.data(), static_cast<unsigned>(i), &t.data()));
}
template <class UI>
inline void eval_right_shift(tommath_int& t, UI i)
{
tommath_int d;
detail::check_tommath_result(mp_div_2d(&t.data(), static_cast<unsigned>(i), &t.data(), &d.data()));
}
template <class UI>
inline void eval_left_shift(tommath_int& t, const tommath_int& v, UI i)
{
detail::check_tommath_result(mp_mul_2d(const_cast< ::mp_int*>(&v.data()), static_cast<unsigned>(i), &t.data()));
}
template <class UI>
inline void eval_right_shift(tommath_int& t, const tommath_int& v, UI i)
{
tommath_int d;
detail::check_tommath_result(mp_div_2d(const_cast< ::mp_int*>(&v.data()), static_cast<unsigned long>(i), &t.data(), &d.data()));
}
inline void eval_bitwise_and(tommath_int& result, const tommath_int& v)
{
BOOST_MP_TOMMATH_BIT_OP_CHECK(result);
BOOST_MP_TOMMATH_BIT_OP_CHECK(v);
detail::check_tommath_result(mp_and(&result.data(), const_cast< ::mp_int*>(&v.data()), &result.data()));
}
inline void eval_bitwise_or(tommath_int& result, const tommath_int& v)
{
BOOST_MP_TOMMATH_BIT_OP_CHECK(result);
BOOST_MP_TOMMATH_BIT_OP_CHECK(v);
detail::check_tommath_result(mp_or(&result.data(), const_cast< ::mp_int*>(&v.data()), &result.data()));
}
inline void eval_bitwise_xor(tommath_int& result, const tommath_int& v)
{
BOOST_MP_TOMMATH_BIT_OP_CHECK(result);
BOOST_MP_TOMMATH_BIT_OP_CHECK(v);
detail::check_tommath_result(mp_xor(&result.data(), const_cast< ::mp_int*>(&v.data()), &result.data()));
}
inline void eval_add(tommath_int& t, const tommath_int& p, const tommath_int& o)
{
detail::check_tommath_result(mp_add(const_cast< ::mp_int*>(&p.data()), const_cast< ::mp_int*>(&o.data()), &t.data()));
}
inline void eval_subtract(tommath_int& t, const tommath_int& p, const tommath_int& o)
{
detail::check_tommath_result(mp_sub(const_cast< ::mp_int*>(&p.data()), const_cast< ::mp_int*>(&o.data()), &t.data()));
}
inline void eval_multiply(tommath_int& t, const tommath_int& p, const tommath_int& o)
{
detail::check_tommath_result(mp_mul(const_cast< ::mp_int*>(&p.data()), const_cast< ::mp_int*>(&o.data()), &t.data()));
}
inline void eval_divide(tommath_int& t, const tommath_int& p, const tommath_int& o)
{
using default_ops::eval_is_zero;
tommath_int d;
if(eval_is_zero(o))
BOOST_THROW_EXCEPTION(std::overflow_error("Integer division by zero"));
detail::check_tommath_result(mp_div(const_cast< ::mp_int*>(&p.data()), const_cast< ::mp_int*>(&o.data()), &t.data(), &d.data()));
}
inline void eval_modulus(tommath_int& t, const tommath_int& p, const tommath_int& o)
{
using default_ops::eval_is_zero;
if(eval_is_zero(o))
BOOST_THROW_EXCEPTION(std::overflow_error("Integer division by zero"));
bool neg = eval_get_sign(p) < 0;
bool neg2 = eval_get_sign(o) < 0;
detail::check_tommath_result(mp_mod(const_cast< ::mp_int*>(&p.data()), const_cast< ::mp_int*>(&o.data()), &t.data()));
if((neg != neg2) && (eval_get_sign(t) != 0))
{
t.negate();
detail::check_tommath_result(mp_add(&t.data(), const_cast< ::mp_int*>(&o.data()), &t.data()));
t.negate();
}
else if(neg && (t.compare(o) == 0))
{
mp_zero(&t.data());
}
}
inline void eval_bitwise_and(tommath_int& result, const tommath_int& u, const tommath_int& v)
{
BOOST_MP_TOMMATH_BIT_OP_CHECK(u);
BOOST_MP_TOMMATH_BIT_OP_CHECK(v);
detail::check_tommath_result(mp_and(const_cast< ::mp_int*>(&u.data()), const_cast< ::mp_int*>(&v.data()), &result.data()));
}
inline void eval_bitwise_or(tommath_int& result, const tommath_int& u, const tommath_int& v)
{
BOOST_MP_TOMMATH_BIT_OP_CHECK(u);
BOOST_MP_TOMMATH_BIT_OP_CHECK(v);
detail::check_tommath_result(mp_or(const_cast< ::mp_int*>(&u.data()), const_cast< ::mp_int*>(&v.data()), &result.data()));
}
inline void eval_bitwise_xor(tommath_int& result, const tommath_int& u, const tommath_int& v)
{
BOOST_MP_TOMMATH_BIT_OP_CHECK(u);
BOOST_MP_TOMMATH_BIT_OP_CHECK(v);
detail::check_tommath_result(mp_xor(const_cast< ::mp_int*>(&u.data()), const_cast< ::mp_int*>(&v.data()), &result.data()));
}
/*
inline void eval_complement(tommath_int& result, const tommath_int& u)
{
//
// Although this code works, it doesn't really do what the user might expect....
// and it's hard to see how it ever could. Disabled for now:
//
result = u;
for(int i = 0; i < result.data().used; ++i)
{
result.data().dp[i] = MP_MASK & ~(result.data().dp[i]);
}
//
// We now need to pad out the left of the value with 1's to round up to a whole number of
// CHAR_BIT * sizeof(mp_digit) units. Otherwise we'll end up with a very strange number of
// bits set!
//
unsigned shift = result.data().used * DIGIT_BIT; // How many bits we're actually using
// How many bits we actually need, reduced by one to account for a mythical sign bit:
int padding = result.data().used * std::numeric_limits<mp_digit>::digits - shift - 1;
while(padding >= std::numeric_limits<mp_digit>::digits)
padding -= std::numeric_limits<mp_digit>::digits;
// Create a mask providing the extra bits we need and add to result:
tommath_int mask;
mask = static_cast<long long>((1u << padding) - 1);
eval_left_shift(mask, shift);
add(result, mask);
}
*/
inline bool eval_is_zero(const tommath_int& val)
{
return mp_iszero(&val.data());
}
inline int eval_get_sign(const tommath_int& val)
{
return mp_iszero(&val.data()) ? 0 : SIGN(&val.data()) ? -1 : 1;
}
template <class A>
inline void eval_convert_to(A* result, const tommath_int& val)
{
*result = boost::lexical_cast<A>(val.str(0, std::ios_base::fmtflags(0)));
}
inline void eval_convert_to(char* result, const tommath_int& val)
{
*result = static_cast<char>(boost::lexical_cast<int>(val.str(0, std::ios_base::fmtflags(0))));
}
inline void eval_convert_to(unsigned char* result, const tommath_int& val)
{
*result = static_cast<unsigned char>(boost::lexical_cast<unsigned>(val.str(0, std::ios_base::fmtflags(0))));
}
inline void eval_convert_to(signed char* result, const tommath_int& val)
{
*result = static_cast<signed char>(boost::lexical_cast<int>(val.str(0, std::ios_base::fmtflags(0))));
}
inline void eval_abs(tommath_int& result, const tommath_int& val)
{
detail::check_tommath_result(mp_abs(const_cast< ::mp_int*>(&val.data()), &result.data()));
}
inline void eval_gcd(tommath_int& result, const tommath_int& a, const tommath_int& b)
{
detail::check_tommath_result(mp_gcd(const_cast< ::mp_int*>(&a.data()), const_cast< ::mp_int*>(&b.data()), const_cast< ::mp_int*>(&result.data())));
}
inline void eval_lcm(tommath_int& result, const tommath_int& a, const tommath_int& b)
{
detail::check_tommath_result(mp_lcm(const_cast< ::mp_int*>(&a.data()), const_cast< ::mp_int*>(&b.data()), const_cast< ::mp_int*>(&result.data())));
}
inline void eval_powm(tommath_int& result, const tommath_int& base, const tommath_int& p, const tommath_int& m)
{
if(eval_get_sign(p) < 0)
{
BOOST_THROW_EXCEPTION(std::runtime_error("powm requires a positive exponent."));
}
detail::check_tommath_result(mp_exptmod(const_cast< ::mp_int*>(&base.data()), const_cast< ::mp_int*>(&p.data()), const_cast< ::mp_int*>(&m.data()), &result.data()));
}
inline void eval_qr(const tommath_int& x, const tommath_int& y,
tommath_int& q, tommath_int& r)
{
detail::check_tommath_result(mp_div(const_cast< ::mp_int*>(&x.data()), const_cast< ::mp_int*>(&y.data()), &q.data(), &r.data()));
}
inline unsigned eval_lsb(const tommath_int& val)
{
int c = eval_get_sign(val);
if(c == 0)
{
BOOST_THROW_EXCEPTION(std::range_error("No bits were set in the operand."));
}
if(c < 0)
{
BOOST_THROW_EXCEPTION(std::range_error("Testing individual bits in negative values is not supported - results are undefined."));
}
return mp_cnt_lsb(const_cast< ::mp_int*>(&val.data()));
}
template <class Integer>
inline typename enable_if<is_unsigned<Integer>, Integer>::type eval_integer_modulus(const tommath_int& x, Integer val)
{
static const mp_digit m = (static_cast<mp_digit>(1) << DIGIT_BIT) - 1;
if(val <= m)
{
mp_digit d;
detail::check_tommath_result(mp_mod_d(const_cast< ::mp_int*>(&x.data()), static_cast<mp_digit>(val), &d));
return d;
}
else
{
return default_ops::eval_integer_modulus(x, val);
}
}
template <class Integer>
inline typename enable_if<is_signed<Integer>, Integer>::type eval_integer_modulus(const tommath_int& x, Integer val)
{
typedef typename make_unsigned<Integer>::type unsigned_type;
return eval_integer_modulus(x, static_cast<unsigned_type>(std::abs(val)));
}
} // namespace backends
using boost::multiprecision::backends::tommath_int;
template<>
struct number_category<tommath_int> : public mpl::int_<number_kind_integer>{};
typedef number<tommath_int > tom_int;
typedef rational_adapter<tommath_int> tommath_rational;
typedef number<tommath_rational> tom_rational;
}} // namespaces
namespace std{
template<boost::multiprecision::expression_template_option ExpressionTemplates>
class numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >
{
typedef boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> number_type;
public:
BOOST_STATIC_CONSTEXPR bool is_specialized = true;
//
// Largest and smallest numbers are bounded only by available memory, set
// to zero:
//
static number_type (min)()
{
return number_type();
}
static number_type (max)()
{
return number_type();
}
static number_type lowest() { return (min)(); }
BOOST_STATIC_CONSTEXPR int digits = INT_MAX;
BOOST_STATIC_CONSTEXPR int digits10 = (INT_MAX / 1000) * 301L;
BOOST_STATIC_CONSTEXPR int max_digits10 = digits10 + 2;
BOOST_STATIC_CONSTEXPR bool is_signed = true;
BOOST_STATIC_CONSTEXPR bool is_integer = true;
BOOST_STATIC_CONSTEXPR bool is_exact = true;
BOOST_STATIC_CONSTEXPR int radix = 2;
static number_type epsilon() { return number_type(); }
static number_type round_error() { return number_type(); }
BOOST_STATIC_CONSTEXPR int min_exponent = 0;
BOOST_STATIC_CONSTEXPR int min_exponent10 = 0;
BOOST_STATIC_CONSTEXPR int max_exponent = 0;
BOOST_STATIC_CONSTEXPR int max_exponent10 = 0;
BOOST_STATIC_CONSTEXPR bool has_infinity = false;
BOOST_STATIC_CONSTEXPR bool has_quiet_NaN = false;
BOOST_STATIC_CONSTEXPR bool has_signaling_NaN = false;
BOOST_STATIC_CONSTEXPR float_denorm_style has_denorm = denorm_absent;
BOOST_STATIC_CONSTEXPR bool has_denorm_loss = false;
static number_type infinity() { return number_type(); }
static number_type quiet_NaN() { return number_type(); }
static number_type signaling_NaN() { return number_type(); }
static number_type denorm_min() { return number_type(); }
BOOST_STATIC_CONSTEXPR bool is_iec559 = false;
BOOST_STATIC_CONSTEXPR bool is_bounded = false;
BOOST_STATIC_CONSTEXPR bool is_modulo = false;
BOOST_STATIC_CONSTEXPR bool traps = false;
BOOST_STATIC_CONSTEXPR bool tinyness_before = false;
BOOST_STATIC_CONSTEXPR float_round_style round_style = round_toward_zero;
};
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::digits;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::digits10;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::max_digits10;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::is_signed;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::is_integer;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::is_exact;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::radix;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::min_exponent;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::min_exponent10;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::max_exponent;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::max_exponent10;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::has_infinity;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::has_quiet_NaN;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::has_signaling_NaN;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST float_denorm_style numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::has_denorm;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::has_denorm_loss;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::is_iec559;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::is_bounded;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::is_modulo;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::traps;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::tinyness_before;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST float_round_style numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::round_style;
#endif
}
#endif