Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

This is the documentation for an old version of Boost. Click here to view this page for the latest version.
PrevUpHomeNext

Class template skew_heap

boost::heap::skew_heap — skew heap

Synopsis

// In header: <boost/heap/skew_heap.hpp>

template<typename T, class... Options> 
class skew_heap {
public:
  // types
  typedef T                                                                                   value_type;      
  typedef implementation_defined::size_type                                                   size_type;       
  typedef implementation_defined::difference_type                                             difference_type; 
  typedef implementation_defined::value_compare                                               value_compare;   
  typedef implementation_defined::allocator_type                                              allocator_type;  
  typedef implementation_defined::reference                                                   reference;       
  typedef implementation_defined::const_reference                                             const_reference; 
  typedef implementation_defined::pointer                                                     pointer;         
  typedef implementation_defined::const_pointer                                               const_pointer;   
  typedef implementation_defined::iterator                                                    iterator;        
  typedef implementation_defined::const_iterator                                              const_iterator;  
  typedef implementation_defined::ordered_iterator                                            ordered_iterator;
  typedef mpl::if_c< is_mutable, typename implementation_defined::handle_type, void * >::type handle_type;     

  // member classes/structs/unions

  struct implementation_defined {
    // types
    typedef T                               value_type;         
    typedef base_maker::compare_argument    value_compare;      
    typedef base_maker::allocator_type      allocator_type;     
    typedef base_maker::node_type           node;               
    typedef allocator_type::pointer         node_pointer;       
    typedef allocator_type::const_pointer   const_node_pointer; 
    typedef unspecified                     value_extractor;    
    typedef boost::array< node_pointer, 2 > child_list_type;    
    typedef child_list_type::iterator       child_list_iterator;
    typedef unspecified                     iterator;           
    typedef iterator                        const_iterator;     
    typedef unspecified                     ordered_iterator;   
    typedef unspecified                     reference;          
    typedef unspecified                     handle_type;        
  };

  // construct/copy/destruct
  explicit skew_heap(value_compare const & = value_compare());
  skew_heap(skew_heap const &);
  skew_heap(skew_heap &&);
  skew_heap& operator=(skew_heap const &);
  skew_heap& operator=(skew_heap &&);
  ~skew_heap(void);

  // public member functions
  mpl::if_c< is_mutable, handle_type, void >::type push(value_type const &);
  template<typename... Args> 
    mpl::if_c< is_mutable, handle_type, void >::type emplace(Args &&...);
  bool empty(void) const;
  size_type size(void) const;
  size_type max_size(void) const;
  void clear(void);
  allocator_type get_allocator(void) const;
  void swap(skew_heap &);
  const_reference top(void) const;
  void pop(void);
  iterator begin(void) const;
  iterator end(void) const;
  ordered_iterator ordered_begin(void) const;
  ordered_iterator ordered_end(void) const;
  void merge(skew_heap &);
  value_compare const & value_comp(void) const;
  template<typename HeapType> bool operator<(HeapType const &) const;
  template<typename HeapType> bool operator>(HeapType const &) const;
  template<typename HeapType> bool operator>=(HeapType const &) const;
  template<typename HeapType> bool operator<=(HeapType const &) const;
  template<typename HeapType> bool operator==(HeapType const &) const;
  template<typename HeapType> bool operator!=(HeapType const &) const;
  void erase(handle_type);
  void update(handle_type, const_reference);
  void update(handle_type);
  void increase(handle_type, const_reference);
  void increase(handle_type);
  void decrease(handle_type, const_reference);
  void decrease(handle_type);

  // public static functions
  static handle_type s_handle_from_iterator(iterator const &);

  // public data members
  static const bool constant_time_size;
  static const bool has_ordered_iterators;
  static const bool is_mergable;
  static const bool is_stable;
  static const bool has_reserve;
  static const bool is_mutable;
};

Description

The template parameter T is the type to be managed by the container. The user can specify additional options and if no options are provided default options are used.

The container supports the following options:

  • boost::heap::compare<>, defaults to compare<std::less<T> >

  • boost::heap::stable<>, defaults to stable<false>

  • boost::heap::stability_counter_type<>, defaults to stability_counter_type<boost::uintmax_t>

  • boost::heap::allocator<>, defaults to allocator<std::allocator<T> >

  • boost::heap::constant_time_size<>, defaults to constant_time_size<true>

  • boost::heap::store_parent_pointer<>, defaults to store_parent_pointer<true>. Maintaining a parent pointer adds some maintenance and size overhead, but iterating a heap is more efficient.

  • boost::heap::mutable<>, defaults to mutable<false>.

skew_heap public types

  1. typedef implementation_defined::iterator iterator;

    Note: The iterator does not traverse the priority queue in order of the priorities.

skew_heap public construct/copy/destruct

  1. explicit skew_heap(value_compare const & cmp = value_compare());

    Effects: constructs an empty priority queue.

    Complexity: Constant.

  2. skew_heap(skew_heap const & rhs);

    Effects: copy-constructs priority queue from rhs.

    Complexity: Linear.

  3. skew_heap(skew_heap && rhs);

    Effects: C++11-style move constructor.

    Complexity: Constant.

    Note: Only available, if BOOST_NO_CXX11_RVALUE_REFERENCES is not defined

  4. skew_heap& operator=(skew_heap const & rhs);

    Effects: Assigns priority queue from rhs.

    Complexity: Linear.

  5. skew_heap& operator=(skew_heap && rhs);

    Effects: C++11-style move assignment.

    Complexity: Constant.

    Note: Only available, if BOOST_NO_CXX11_RVALUE_REFERENCES is not defined

  6. ~skew_heap(void);

skew_heap public member functions

  1. mpl::if_c< is_mutable, handle_type, void >::type push(value_type const & v);

    Effects: Adds a new element to the priority queue.

    Complexity: Logarithmic (amortized).

  2. template<typename... Args> 
      mpl::if_c< is_mutable, handle_type, void >::type emplace(Args &&... args);

    Effects: Adds a new element to the priority queue. The element is directly constructed in-place.

    Complexity: Logarithmic (amortized).

  3. bool empty(void) const;

    Effects: Returns true, if the priority queue contains no elements.

    Complexity: Constant.

  4. size_type size(void) const;

    Effects: Returns the number of elements contained in the priority queue.

    Complexity: Constant, if configured with constant_time_size<true>, otherwise linear.

  5. size_type max_size(void) const;

    Effects: Returns the maximum number of elements the priority queue can contain.

    Complexity: Constant.

  6. void clear(void);

    Effects: Removes all elements from the priority queue.

    Complexity: Linear.

  7. allocator_type get_allocator(void) const;

    Effects: Returns allocator.

    Complexity: Constant.

  8. void swap(skew_heap & rhs);

    Effects: Swaps two priority queues.

    Complexity: Constant.

  9. const_reference top(void) const;

    Effects: Returns a const_reference to the maximum element.

    Complexity: Constant.

  10. void pop(void);

    Effects: Removes the top element from the priority queue.

    Complexity: Logarithmic (amortized).

  11. iterator begin(void) const;

    Effects: Returns an iterator to the first element contained in the priority queue.

    Complexity: Constant.

  12. iterator end(void) const;

    Effects: Returns an iterator to the end of the priority queue.

    Complexity: Constant.

  13. ordered_iterator ordered_begin(void) const;

    Effects: Returns an ordered iterator to the first element contained in the priority queue.

    Note: Ordered iterators traverse the priority queue in heap order.

  14. ordered_iterator ordered_end(void) const;

    Effects: Returns an ordered iterator to the first element contained in the priority queue.

    Note: Ordered iterators traverse the priority queue in heap order.

  15. void merge(skew_heap & rhs);

    Effects: Merge all elements from rhs into this

    Complexity: Logarithmic (amortized).

  16. value_compare const & value_comp(void) const;

    Effect: Returns the value_compare object used by the priority queue

  17. template<typename HeapType> bool operator<(HeapType const & rhs) const;

    Returns: Element-wise comparison of heap data structures

    Requirement: the value_compare object of both heaps must match.

  18. template<typename HeapType> bool operator>(HeapType const & rhs) const;

    Returns: Element-wise comparison of heap data structures

    Requirement: the value_compare object of both heaps must match.

  19. template<typename HeapType> bool operator>=(HeapType const & rhs) const;

    Returns: Element-wise comparison of heap data structures

    Requirement: the value_compare object of both heaps must match.

  20. template<typename HeapType> bool operator<=(HeapType const & rhs) const;

    Returns: Element-wise comparison of heap data structures

    Requirement: the value_compare object of both heaps must match.

  21. template<typename HeapType> bool operator==(HeapType const & rhs) const;

    Equivalent comparison Returns: True, if both heap data structures are equivalent.

    Requirement: the value_compare object of both heaps must match.

  22. template<typename HeapType> bool operator!=(HeapType const & rhs) const;

    Equivalent comparison Returns: True, if both heap data structures are not equivalent.

    Requirement: the value_compare object of both heaps must match.

  23. void erase(handle_type object);

    Effects: Removes the element handled by handle from the priority_queue.

    Complexity: Logarithmic (amortized).

  24. void update(handle_type handle, const_reference v);

    Effects: Assigns v to the element handled by handle & updates the priority queue.

    Complexity: Logarithmic (amortized).

  25. void update(handle_type handle);

    Effects: Updates the heap after the element handled by handle has been changed.

    Complexity: Logarithmic (amortized).

    Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined!

  26. void increase(handle_type handle, const_reference v);

    Effects: Assigns v to the element handled by handle & updates the priority queue.

    Complexity: Logarithmic (amortized).

    Note: The new value is expected to be greater than the current one

  27. void increase(handle_type handle);

    Effects: Updates the heap after the element handled by handle has been changed.

    Complexity: Logarithmic (amortized).

    Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined!

  28. void decrease(handle_type handle, const_reference v);

    Effects: Assigns v to the element handled by handle & updates the priority queue.

    Complexity: Logarithmic (amortized).

    Note: The new value is expected to be less than the current one

  29. void decrease(handle_type handle);

    Effects: Updates the heap after the element handled by handle has been changed.

    Complexity: Logarithmic (amortized).

    Note: The new value is expected to be less than the current one. If this is not called, after a handle has been updated, the behavior of the data structure is undefined!

skew_heap public static functions

  1. static handle_type s_handle_from_iterator(iterator const & it);

    Effects: Casts an iterator to a node handle.

    Complexity: Constant.

    Requirement: data structure must be configured as mutable


PrevUpHomeNext