...one of the most highly
regarded and expertly designed C++ library projects in the
world.
— Herb Sutter and Andrei
Alexandrescu, C++
Coding Standards
template <class Rhs, class Ret=dont_care>
struct has_negate : public true_type-or-false_type
{};
Inherits: If (i) rhs
of type Rhs
can be used in
expression -rhs
,
and (ii) Ret=dont_care
or the result of expression
-rhs
is convertible to Ret
then
inherits from true_type,
otherwise inherits from false_type.
The default behaviour (Ret=dont_care
)
is to not check for the return value of prefix operator-
. If Ret
is different from the default dont_care
type, the return value is checked to be convertible to Ret
.
Convertible to Ret
means
that the return value of the operator can be used as argument to a function
expecting Ret
:
void f(Ret); Rhs rhs; f(-rhs); // is valid if has_negate<Rhs, Ret>::value==true
If Ret=void
, the return type is checked to be exactly
void
.
Header: #include
<boost/type_traits/has_negate.hpp>
or #include <boost/type_traits/has_operator.hpp>
or #include <boost/type_traits.hpp>
Examples:
has_negate<Rhs, Ret>::value_type
is the typebool
.
has_negate<Rhs, Ret>::value
is abool
integral constant expression.
has_negate<int>::value
is abool
integral constant expression that evaluates totrue
.
has_negate<long>
inherits fromtrue_type
.
has_negate<int, int>
inherits fromtrue_type
.
has_negate<int, long>
inherits fromtrue_type
.
has_negate<double, double>
inherits fromtrue_type
.
has_negate<double, int>
inherits fromtrue_type
.
has_negate<const int>
inherits fromtrue_type
.
has_negate<int, std::string>
inherits fromfalse_type
.
See also: Operator Type Traits
Limitation:
Known issues:
operator-
is public or not: if operator-
is defined as a private member of Rhs
then instantiating has_negate<Rhs>
will produce a compiler error. For this reason has_negate
cannot be used to determine whether a type has a public operator-
or not.
struct A { private: void operator-(); }; boost::has_negate<A>::value; // error: A::operator-() is private
A
and B
is convertible to A
.
In this case, the compiler will report an ambiguous overload.
struct A { }; void operator-(const A&); struct B { operator A(); }; boost::has_negate<A>::value; // this is fine boost::has_negate<B>::value; // error: ambiguous overload
operator-
is defined but does not bind for a given template type, it is still detected
by the trait which returns true
instead of false
. Example:
#include <boost/type_traits/has_negate.hpp> #include <iostream> template <class T> struct contains { T data; }; template <class T> bool operator-(const contains<T> &rhs) { return f(rhs.data); } class bad { }; class good { }; bool f(const good&) { } int main() { std::cout<<std::boolalpha; // works fine for contains<good> std::cout<<boost::has_negate< contains< good > >::value<<'\n'; // true contains<good> g; -g; // ok // does not work for contains<bad> std::cout<<boost::has_negate< contains< bad > >::value<<'\n'; // true, should be false contains<bad> b; -b; // compile time error return 0; }
volatile
qualifier is not
properly handled and would lead to undefined behavior