doc/html/boost_asio/example/cpp03/porthopper/client.cpp
//
// client.cpp
// ~~~~~~~~~~
//
// Copyright (c) 2003-2015 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#include <boost/asio.hpp>
#include <boost/lambda/lambda.hpp>
#include <boost/lambda/bind.hpp>
#include <boost/lambda/if.hpp>
#include <boost/shared_ptr.hpp>
#include <algorithm>
#include <cstdlib>
#include <exception>
#include <iostream>
#include <string>
#include "protocol.hpp"
using namespace boost;
using boost::asio::ip::tcp;
using boost::asio::ip::udp;
int main(int argc, char* argv[])
{
try
{
if (argc != 3)
{
std::cerr << "Usage: client <host> <port>\n";
return 1;
}
using namespace std; // For atoi.
std::string host_name = argv[1];
std::string port = argv[2];
boost::asio::io_service io_service;
// Determine the location of the server.
tcp::resolver resolver(io_service);
tcp::resolver::query query(host_name, port);
tcp::endpoint remote_endpoint = *resolver.resolve(query);
// Establish the control connection to the server.
tcp::socket control_socket(io_service);
control_socket.connect(remote_endpoint);
// Create a datagram socket to receive data from the server.
boost::shared_ptr<udp::socket> data_socket(
new udp::socket(io_service, udp::endpoint(udp::v4(), 0)));
// Determine what port we will receive data on.
udp::endpoint data_endpoint = data_socket->local_endpoint();
// Ask the server to start sending us data.
control_request start = control_request::start(data_endpoint.port());
boost::asio::write(control_socket, start.to_buffers());
unsigned long last_frame_number = 0;
for (;;)
{
// Receive 50 messages on the current data socket.
for (int i = 0; i < 50; ++i)
{
// Receive a frame from the server.
frame f;
data_socket->receive(f.to_buffers(), 0);
if (f.number() > last_frame_number)
{
last_frame_number = f.number();
std::cout << "\n" << f.payload();
}
}
// Time to switch to a new socket. To ensure seamless handover we will
// continue to receive packets using the old socket until data arrives on
// the new one.
std::cout << " Starting renegotiation";
// Create the new data socket.
boost::shared_ptr<udp::socket> new_data_socket(
new udp::socket(io_service, udp::endpoint(udp::v4(), 0)));
// Determine the new port we will use to receive data.
udp::endpoint new_data_endpoint = new_data_socket->local_endpoint();
// Ask the server to switch over to the new port.
control_request change = control_request::change(
data_endpoint.port(), new_data_endpoint.port());
boost::system::error_code control_result;
boost::asio::async_write(control_socket, change.to_buffers(),
(
lambda::var(control_result) = lambda::_1
));
// Try to receive a frame from the server on the new data socket. If we
// successfully receive a frame on this new data socket we can consider
// the renegotation complete. In that case we will close the old data
// socket, which will cause any outstanding receive operation on it to be
// cancelled.
frame f1;
boost::system::error_code new_data_socket_result;
new_data_socket->async_receive(f1.to_buffers(),
(
// Note: lambda::_1 is the first argument to the callback handler,
// which in this case is the error code for the operation.
lambda::var(new_data_socket_result) = lambda::_1,
lambda::if_(!lambda::_1)
[
// We have successfully received a frame on the new data socket,
// so we can close the old data socket. This will cancel any
// outstanding receive operation on the old data socket.
lambda::var(data_socket) = boost::shared_ptr<udp::socket>()
]
));
// This loop will continue until we have successfully completed the
// renegotiation (i.e. received a frame on the new data socket), or some
// unrecoverable error occurs.
bool done = false;
while (!done)
{
// Even though we're performing a renegotation, we want to continue
// receiving data as smoothly as possible. Therefore we will continue to
// try to receive a frame from the server on the old data socket. If we
// receive a frame on this socket we will interrupt the io_service,
// print the frame, and resume waiting for the other operations to
// complete.
frame f2;
done = true; // Let's be optimistic.
if (data_socket) // Might have been closed by new_data_socket's handler.
{
data_socket->async_receive(f2.to_buffers(), 0,
(
lambda::if_(!lambda::_1)
[
// We have successfully received a frame on the old data
// socket. Stop the io_service so that we can print it.
lambda::bind(&boost::asio::io_service::stop, &io_service),
lambda::var(done) = false
]
));
}
// Run the operations in parallel. This will block until all operations
// have finished, or until the io_service is interrupted. (No threads!)
io_service.reset();
io_service.run();
// If the io_service.run() was interrupted then we have received a frame
// on the old data socket. We need to keep waiting for the renegotation
// operations to complete.
if (!done)
{
if (f2.number() > last_frame_number)
{
last_frame_number = f2.number();
std::cout << "\n" << f2.payload();
}
}
}
// Since the loop has finished, we have either successfully completed
// the renegotation, or an error has occurred. First we'll check for
// errors.
if (control_result)
throw boost::system::system_error(control_result);
if (new_data_socket_result)
throw boost::system::system_error(new_data_socket_result);
// If we get here it means we have successfully started receiving data on
// the new data socket. This new data socket will be used from now on
// (until the next time we renegotiate).
std::cout << " Renegotiation complete";
data_socket = new_data_socket;
data_endpoint = new_data_endpoint;
if (f1.number() > last_frame_number)
{
last_frame_number = f1.number();
std::cout << "\n" << f1.payload();
}
}
}
catch (std::exception& e)
{
std::cerr << "Exception: " << e.what() << std::endl;
}
return 0;
}