...one of the most highly
regarded and expertly designed C++ library projects in the
world.
— Herb Sutter and Andrei
Alexandrescu, C++
Coding Standards
#include <boost/multiprecision/mpfr.hpp>
namespace boost{ namespace multiprecision{ enum mpfr_allocation_type { allocate_stack, allocate_dynamic }; template <unsigned Digits10, mpfr_allocation_type AllocateType = allocate_dynamic> class mpfr_float_backend; typedef number<mpfr_float_backend<50> > mpfr_float_50; typedef number<mpfr_float_backend<100> > mpfr_float_100; typedef number<mpfr_float_backend<500> > mpfr_float_500; typedef number<mpfr_float_backend<1000> > mpfr_float_1000; typedef number<mpfr_float_backend<0> > mpfr_float; typedef number<mpfr_float_backend<50, allocate_stack> > static_mpfr_float_50; typedef number<mpfr_float_backend<100, allocate_stack> > static_mpfr_float_100; }} // namespaces
The mpfr_float_backend
type is used in conjunction with number
:
It acts as a thin wrapper around the MPFR
mpfr_t
to provide an real-number
type that is a drop-in replacement for the native C++ floating-point types,
but with much greater precision.
Type mpfr_float_backend
can be used at fixed precision by specifying a non-zero Digits10
template parameter, or at variable precision by setting the template argument
to zero. The typedefs mpfr_float_50, mpfr_float_100, mpfr_float_500, mpfr_float_1000
provide arithmetic types at 50, 100, 500 and 1000 decimal digits precision
respectively. The typedef mpfr_float provides a variable precision type
whose precision can be controlled via the number
s
member functions.
In addition the second template parameter lets you choose between dynamic
allocation (the default, and uses MPFR's normal allocation routines), or
stack allocation (where all the memory required for the underlying data
types is stored within mpfr_float_backend
).
The latter option can result in significantly faster code, at the expense
of growing the size of mpfr_float_backend
.
It can only be used at fixed precision, and should only be used for lower
digit counts. Note that we can not guarantee that using allocate_stack
won't cause any calls to mpfr's allocation routines, as mpfr may call these
inside it's own code. The following table gives an idea of the performance
tradeoff's at 50 decimal digits precision[2]:
Type |
Bessel function evaluation, relative times |
---|---|
|
1.0 (5.5s) |
|
1.05 (5.8s) |
|
1.05 (5.8s) |
|
1.16 (6.4s) |
Note | |
---|---|
This type only provides |
As well as the usual conversions from arithmetic and string types, instances
of number<mpfr_float_backend<N> >
are copy constructible and assignable
from:
It's also possible to access the underlying mpfr_t
via the data() member function of mpfr_float_backend
.
Things you should know when using this type:
mpfr_float_backend
is set to a NaN (this is the default MPFR
behavior).
number
on this backend
move aware.
std::runtime_error
being thrown if the string can not be interpreted as a valid floating-point
number.
#include <boost/multiprecision/mpfr.hpp> #include <boost/math/special_functions/gamma.hpp> #include <iostream> int main() { using namespace boost::multiprecision; // Operations at variable precision and no numeric_limits support: mpfr_float a = 2; mpfr_float::default_precision(1000); std::cout << mpfr_float::default_precision() << std::endl; std::cout << sqrt(a) << std::endl; // print root-2 // Operations at fixed precision and full numeric_limits support: mpfr_float_100 b = 2; std::cout << std::numeric_limits<mpfr_float_100>::digits << std::endl; // We can use any C++ std lib function: std::cout << log(b) << std::endl; // print log(2) // We can also use any function from Boost.Math: std::cout << boost::math::tgamma(b) << std::endl; // These even work when the argument is an expression template: std::cout << boost::math::tgamma(b * b) << std::endl; // Access the underlying data: mpfr_t r; mpfr_init(r); mpfr_set(r, b.backend().data(), GMP_RNDN); mpfr_clear(r); return 0; }