...one of the most highly
regarded and expertly designed C++ library projects in the
world.
— Herb Sutter and Andrei
Alexandrescu, C++
Coding Standards
Copyright © 2008 Howard Hinnant
Copyright © 2006, 2008 Beman Dawes
Copyright © 2009-2012 Vicente J. Botet Escriba
Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
Table of Contents
This documentation makes use of the following naming and formatting conventions.
fixed width
font
and is syntax-highlighted.
italics
.
()
, as in free_function()
.
class_template<>
;
that is, it is in code font and its name is followed by <>
to indicate that it is a class template.
MACRO()
;
that is, it is uppercase in code font and its name is followed by ()
to indicate that it is a function-like
macro. Object-like macros appear without the trailing ()
.
![]() |
Note |
---|---|
In addition, notes such as this one specify non-essential information that provides additional background or rationale. |
Finally, you can mentally add the following to any code fragments in this document:
// Include all of Ratio files #include <boost/ratio.hpp> using namespace boost;
Boost.Ratio aims to implement the compile time ratio facility in C++0x, as proposed in N2661 - A Foundation to Sleep On. That document provides background and motivation for key design decisions and is the source of a good deal of information in this documentation.
The Boost.Ratio library provides:
ratio
, for specifying compile
time rational constants such as 1/3 of a nanosecond or the number of
inches per meter. ratio
represents a compile time
ratio of compile time constants with support for compile time arithmetic
with overflow and division by zero protection.
boost::ratio<N, D>
in the form of a std::basic_string
which can be useful for I/O.
ratio
<> in the context
of Boost.MPL numeric metafunctions.
Boost.Ratio is in the latest Boost release in the folder /boost/ratio
.
Documentation, tests and examples folder are at boost/libs/ratio/
.
You can also access the latest (unstable?) state from the Boost
trunk directories boost/ratio
and libs/ratio
.
Just go to the wiki and follow the instructions there for anonymous SVN access.
The simple way is to decompress (or checkout from SVN) the files in your BOOST_ROOT directory.
Boost.Ratio is a header only library,
so no need to compile anything, you just need to include
<boost/ratio.hpp>
.
Boost.Ratio depends on some Boost libraries. For these specific parts you must use either Boost version 1.39.0 or later (even older versions may work).
In particular, Boost.Ratio depends on:
for configuration purposes, ...
for cstdint conformance, and integer traits ...
for MPL Assert and bool, logical ...
for STATIC_ASSERT, ...
for is_base, is_convertible ...
for enable_if, ...
No link is needed.
All functions in the library are exception-neutral, providing the strong exception safety guarantee.
All functions in the library are thread-unsafe except when noted explicitly.
Boost.Ratio should work with an C++03 conforming compiler. The current version has been tested on:
Windows with
MinGW with
Ubuntu with * GCC 4.4.6 * GCC 4.4.6 -std=c++0x * GCC 4.5.4 * GCC 4.5.4 -std=c++0x * GCC 4.6.1 * GCC 4.6.1 -std=c++0x * Intel 12.1.3 * Intel 12.1.3 -std=c++0x
OsX with
![]() |
Note |
---|---|
Please let us know how this works on other platforms/compilers. |
![]() |
Note |
---|---|
Please send any questions, comments and bug reports to boost <at> lists <dot> boost <dot> org. |
ratio
is a general purpose utility inspired by Walter Brown allowing one to easily
and safely compute rational values at compile-time. The ratio
class catches all errors (such
as divide by zero and overflow) at compile time. It is used in the duration
and time_point
classes to
efficiently create units of time. It can also be used in other "quantity"
libraries or anywhere there is a rational constant which is known at compile-time.
The use of this utility can greatly reduce the chances of run-time overflow
because the ratio
(and any ratios resulting
from ratio
arithmetic) are always reduced to the lowest terms.
ratio
is a template taking two intmax_ts
,
with the second defaulted to 1. In addition to copy constructors and assignment,
it only has two public members, both of which are static
const intmax_t
.
One is the numerator of the ratio
and the other is the denominator.
The ratio
is always normalized such that it is expressed in lowest terms, and the denominator
is always positive. When the numerator is 0, the denominator is always 1.
Example:
typedefratio
<5, 3> five_thirds; // five_thirds::num == 5, five_thirds::den == 3 typedefratio
<25, 15> also_five_thirds; // also_five_thirds::num == 5, also_five_thirds::den == 3 typedef ratio_divide<five_thirds, also_five_thirds>::type one; // one::num == 1, one::den == 1
This facility also includes convenience typedefs for the SI prefixes atto
through exa
corresponding to their internationally
recognized definitions (in terms of ratio
). This is a tremendous syntactic
convenience. It will prevent errors in specifying constants as one no longer
has to double count the number of zeros when trying to write millions or
billions.
Example:
typedef ratio_multiply<ratio
<5>, giga>::type _5giga; // _5giga::num == 5000000000, _5giga::den == 1 typedef ratio_multiply<ratio
<5>, nano>::type _5nano; // _5nano::num == 1, _5nano::den == 200000000
For each ratio<N, D>
there exists a ratio_string<ratio<N,
D>,
CharT>
for which you can query two strings: symbol
and prefix
. For those ratio
's that correspond to an SI
prefix prefix corresponds to the internationally recognized prefix,
stored as a basic_string<CharT>
. For example ratio_string<mega, char>::prefix()
returns string("mega")
.
For those ratio
s that correspond
to an SI
prefix symbol
corresponds
to the internationally recognized symbol, stored as a basic_string<CharT>
. For example, ratio_string<mega, char>::symbol()
returns string("M")
.
For all other ratio
s, both
prefix()
and symbol()
return a basic_string
containing
"[ratio::num/ratio::den
]".
ratio_string<ratio<N, D>, CharT>
is only defined for four character types:
char
: UTF-8
char16_t
: UTF-16
char32_t
: UTF-32
wchar_t
: UTF-16 (if wchar_t
is 16 bits) or UTF-32
When the character is char, UTF-8 will be used to encode the names. When
the character is char16_t
, UTF-16
will be used to encode the names. When the character is char32_t
,
UTF-32 will be used to encode the names. When the character is wchar_t
, the encoding will be UTF-16 if wchar_t
is 16 bits, and otherwise UTF-32.
The symbol
(Greek mu or μ)
for micro is defined by Unicode
to be U+00B5.
Examples:
#include <boost/ratio/ratio_io.hpp> #include <iostream> int main() { using namespace std; using namespace boost; cout << "ratio_string<deca, char>::prefix() = " << ratio_string<deca, char>::prefix() << '\n'; cout << "ratio_string<deca, char>::symbol() = " << ratio_string<deca, char>::symbol() << '\n'; cout << "ratio_string<giga, char>::prefix() = " << ratio_string<giga, char>::prefix() << '\n'; cout << "ratio_string<giga, char>::symbol() = " << ratio_string<giga, char>::symbol() << '\n'; cout << "ratio_string<ratio<4, 6>, char>::prefix() = " << ratio_string<ratio<4, 6>, char>::prefix() << '\n'; cout << "ratio_string<ratio<4, 6>, char>::symbol() = " << ratio_string<ratio<4, 6>, char>::symbol() << '\n'; }
The output will be
ratio_string<deca, char>::prefix() = deca ratio_string<deca, char>::symbol() = da ratio_string<giga, char>::prefix() = giga ratio_string<giga, char>::symbol() = G ratio_string<ratio<4, 6>, char>::prefix() = [2/3] ratio_string<ratio<4, 6>, char>::symbol() = [2/3]
With the view of the _ratio class as a Rational Constant we can mix _ratio<> and Boost.MPL Integral Constants in the same expression, as in
typedef mpl::times<int_<5>, giga>::type _5giga; // _5giga::num == 5000000000, _5giga::den == 1 typedef mpl::times<int_<5>, nano>::type _5nano; // _5nano::num == 1, _5nano::den == 200000000
This example illustrates the use of type-safe physics code interoperating
with boost::chrono::duration
types, taking advantage of the
Boost.Ratio infrastructure and design
philosophy.
Let's start by defining a length
class template that mimics boost::chrono::duration
,
which represents a time duration in various units, but restricts the representation
to double
and uses Boost.Ratio for length unit conversions:
template <class Ratio> class length { private: double len_; public: typedef Ratio ratio; length() : len_(1) {} length(const double& len) : len_(len) {} template <class R> length(const length<R>& d) : len_(d.count() * boost::ratio_divide<Ratio, R>::type::den / boost::ratio_divide<Ratio, R>::type::num) {} double count() const {return len_;} length& operator+=(const length& d) {len_ += d.count(); return *this;} length& operator-=(const length& d) {len_ -= d.count(); return *this;} length operator+() const {return *this;} length operator-() const {return length(-len_);} length& operator*=(double rhs) {len_ *= rhs; return *this;} length& operator/=(double rhs) {len_ /= rhs; return *this;} };
Here's a small sampling of length units:
typedef length<boost::ratio
<1> > meter; // set meter as "unity" typedef length<boost::centi
> centimeter; // 1/100 meter typedef length<boost::kilo
> kilometer; // 1000 meters typedef length<boost::ratio
<254, 10000> > inch; // 254/10000 meters
Note that since length
's
template parameter is actually a generic ratio type, so we can use boost::ratio
allowing for more complex length units:
typedef length<boost::ratio_multiply<boost::ratio
<12>, inch::ratio
>::type> foot; // 12 inchs typedef length<boost::ratio_multiply<boost::ratio
<5280>, foot::ratio
>::type> mile; // 5280 feet
Now we need a floating point-based definition of seconds:
typedef boost::chrono::duration<double> seconds; // unity
We can even support sub-nanosecond durations:
typedef boost::chrono::duration<double, boost::pico
> picosecond; // 10^-12 seconds typedef boost::chrono::duration<double, boost::femto
> femtosecond; // 10^-15 seconds typedef boost::chrono::duration<double, boost::atto
> attosecond; // 10^-18 seconds
Finally, we can write a proof-of-concept of an SI units library, hard-wired for meters and floating point seconds, though it will accept other units:
template <class R1, class R2> class quantity { double q_; public: typedef R1 time_dim; typedef R2 distance_dim; quantity() : q_(1) {} double get() const {return q_;} void set(double q) {q_ = q;} }; template <> class quantity<boost::ratio
<1>, boost::ratio
<0> > { double q_; public: quantity() : q_(1) {} quantity(seconds d) : q_(d.count()) {} // note: only User1::seconds needed here double get() const {return q_;} void set(double q) {q_ = q;} }; template <> class quantity<boost::ratio
<0>, boost::ratio
<1> > { double q_; public: quantity() : q_(1) {} quantity(meter d) : q_(d.count()) {} // note: only User1::meter needed here double get() const {return q_;} void set(double q) {q_ = q;} }; template <> class quantity<boost::ratio
<0>, boost::ratio
<0> > { double q_; public: quantity() : q_(1) {} quantity(double d) : q_(d) {} double get() const {return q_;} void set(double q) {q_ = q;} };
That allows us to create some useful SI-based unit types:
typedef quantity<boost::ratio
<0>, boost::ratio
<0> > Scalar; typedef quantity<boost::ratio
<1>, boost::ratio
<0> > Time; // second typedef quantity<boost::ratio
<0>, boost::ratio
<1> > Distance; // meter typedef quantity<boost::ratio
<-1>, boost::ratio
<1> > Speed; // meter/second typedef quantity<boost::ratio
<-2>, boost::ratio
<1> > Acceleration; // meter/second^2
To make quantity useful, we need to be able to do arithmetic:
template <class R1, class R2, class R3, class R4> quantity<typename boost::ratio_subtract<R1, R3>::type, typename boost::ratio_subtract<R2, R4>::type> operator/(const quantity<R1, R2>& x, const quantity<R3, R4>& y) { typedef quantity<typename boost::ratio_subtract<R1, R3>::type, typename boost::ratio_subtract<R2, R4>::type> R; R r; r.set(x.get() / y.get()); return r; } template <class R1, class R2, class R3, class R4> quantity<typename boost::ratio_add<R1, R3>::type, typename boost::ratio_add<R2, R4>::type> operator*(const quantity<R1, R2>& x, const quantity<R3, R4>& y) { typedef quantity<typename boost::ratio_add<R1, R3>::type, typename boost::ratio_add<R2, R4>::type> R; R r; r.set(x.get() * y.get()); return r; } template <class R1, class R2> quantity<R1, R2> operator+(const quantity<R1, R2>& x, const quantity<R1, R2>& y) { typedef quantity<R1, R2> R; R r; r.set(x.get() + y.get()); return r; } template <class R1, class R2> quantity<R1, R2> operator-(const quantity<R1, R2>& x, const quantity<R1, R2>& y) { typedef quantity<R1, R2> R; R r; r.set(x.get() - y.get()); return r; }
With all of the foregoing scaffolding, we can now write an exemplar of a type-safe physics function:
Distance compute_distance(Speed v0, Time t, Acceleration a) { return v0 * t + Scalar(.5) * a * t * t; // if a units mistake is made here it won't compile }
Finally, we can exercise what we've created, even using custom time durations
(User1::seconds
) as well as Boost time durations
(boost::chrono::hours
). The input can be in arbitrary,
though type-safe, units, the output is always in SI units. (A complete
Units library would support other units, of course.)
int main() { typedef boost::ratio
<8, BOOST_INTMAX_C(0x7FFFFFFFD)> R1; typedef boost::ratio
<3, BOOST_INTMAX_C(0x7FFFFFFFD)> R2; typedef User1::quantity<boost::ratio_subtract<boost::ratio
<0>, boost::ratio
<1> >::type, boost::ratio_subtract<boost::ratio
<1>, boost::ratio
<0> >::type > RR; typedef boost::ratio_subtract<R1, R2>::type RS; std::cout << RS::num << '/' << RS::den << '\n'; std::cout << "*************\n"; std::cout << "* testUser1 *\n"; std::cout << "*************\n"; User1::Distance d( User1::mile(110) ); User1::Time t( boost::chrono::hours
(2) ); RR r=d / t; //r.set(d.get() / t.get()); User1::Speed rc= r; User1::Speed s = d / t; std::cout << "Speed = " << s.get() << " meters/sec\n"; User1::Acceleration a = User1::Distance( User1::foot(32.2) ) / User1::Time() / User1::Time(); std::cout << "Acceleration = " << a.get() << " meters/sec^2\n"; User1::Distance df = compute_distance(s, User1::Time( User1::seconds(0.5) ), a); std::cout << "Distance = " << df.get() << " meters\n"; std::cout << "There are " << User1::mile::ratio::den << '/' << User1::mile::ratio::num << " miles/meter"; User1::meter mt = 1; User1::mile mi = mt; std::cout << " which is approximately " << mi.count() << '\n'; std::cout << "There are " << User1::mile::ratio::num << '/' << User1::mile::ratio::den << " meters/mile"; mi = 1; mt = mi; std::cout << " which is approximately " << mt.count() << '\n'; User1::attosecond as(1); User1::seconds sec = as; std::cout << "1 attosecond is " << sec.count() << " seconds\n"; std::cout << "sec = as; // compiles\n"; sec = User1::seconds(1); as = sec; std::cout << "1 second is " << as.count() << " attoseconds\n"; std::cout << "as = sec; // compiles\n"; std::cout << "\n"; return 0; }
See the source file example/si_physics.cpp
The most authoritative reference material for the library is the C++ Standards Committee's current Working Paper (WP). 20.6 Compile-time rational arithmetic "ratio"
From Howard E. Hinnant, Walter E. Brown, Jeff Garland and Marc Paterno. Is very informative and provides motivation for key design decisions
From Vicente Juan Botet Escriba.
<boost/ratio/config.hpp>
<boost/ratio/mpl/rational_constant.hpp>
<boost/ratio/mpl/rational_c_tag.hpp>
<boost/ratio/mpl/numeric_cast.hpp>
<boost/ratio/mpl/arithmetic.hpp>
<boost/ratio/mpl/plus.hpp>
<boost/ratio/mpl/minus.hpp>
<boost/ratio/mpl/times.hpp>
<boost/ratio/mpl/divides.hpp>
<boost/ratio/mpl/gcd.hpp>
<boost/ratio/mpl/lcm.hpp>
<boost/ratio/mpl/negate.hpp>
<boost/ratio/mpl/abs.hpp>
<boost/ratio/mpl/sign.hpp>
<boost/ratio/mpl/comparison.hpp>
<boost/ratio/mpl/equal_to.hpp>
<boost/ratio/mpl/not_equal_to.hpp>
<boost/ratio/mpl/less.hpp>
<boost/ratio/mpl/less_equal.hpp>
<boost/ratio/mpl/greater.hpp>
<boost/ratio/mpl/greater_equal.hpp>
// Configuration macros #defineBOOST_RATIO_VERSION
#defineBOOST_RATIO_EXTENSIONS
#defineBOOST_RATIO_PROVIDES_DEPRECATED_FEATURES_SINCE_V2_0_0
#defineBOOST_RATIO_DONT_PROVIDE_DEPRECATED_FEATURES_SINCE_V2_0_0
#defineBOOST_RATIO_USES_STATIC_ASSERT
#defineBOOST_RATIO_USES_MPL_ASSERT
#defineBOOST_RATIO_USES_ARRAY_ASSERT
When BOOST_RATIO_EXTENSIONS
is defined, Boost.Ratio provides in addition
some extension to the C++ standard, see below.
When BOOST_RATIO_PROVIDES_DEPRECATED_FEATURES_SINCE_V2_0_0
is defined the deprecated features stated as DEPRECATED V2 are provided.
When BOOST_RATIO_DONT_PROVIDE_DEPRECATED_FEATURES_SINCE_V2_0_0
is defined the deprecated features stated as DEPRECATED
V2 are NOT provided.
BOOST_RATIO_VERSION
stands for the Boost.Ratio version which can be 1 or 2.
The default up to 1.55 is version 1. Since 1.56 it will be 2.
When BOOST_RATIO_VERSION
is 1 BOOST_RATIO_PROVIDES_DEPRECATED_FEATURES_SINCE_V2_0_0
is defined by default.
When BOOST_RATIO_VERSION
is 2 BOOST_RATIO_DONT_PROVIDE_DEPRECATED_FEATURES_SINCE_V2_0_0
is defined by default.
When BOOST_NO_STATIC_ASSERT is defined, the user can select the way static assertions are reported. Define
BOOST_RATIO_USES_STATIC_ASSERT
to use Boost.StaticAssert.
BOOST_RATIO_USES_MPL_ASSERT
to use Boost.MPL static assertions.
BOOST_RATIO_USES_ARRAY_ASSERT
to use Boost.Ratio internal static
assertions.
The default behavior is as if BOOST_RATIO_USES_ARRAY_ASSERT
was defined.
When BOOST_RATIO_USES_MPL_ASSERT
is not defined the following symbols are defined as shown:
#define BOOST_RATIO_OVERFLOW_IN_ADD "overflow in ratio add" #define BOOST_RATIO_OVERFLOW_IN_SUB "overflow in ratio sub" #define BOOST_RATIO_OVERFLOW_IN_MUL "overflow in ratio mul" #define BOOST_RATIO_OVERFLOW_IN_DIV "overflow in ratio div" #define BOOST_RATIO_NUMERATOR_IS_OUT_OF_RANGE "ratio numerator is out of range" #define BOOST_RATIO_DIVIDE_BY_0 "ratio divide by 0" #define BOOST_RATIO_DENOMINATOR_IS_OUT_OF_RANGE "ratio denominator is out of range"
Depending upon the static assertion system used, a hint as to the failing assertion will appear in some form in the compiler diagnostic output.
This header includes all the ratio related header files
#include <boost/ratio/ratio.hpp> #include <boost/ratio/ratio_io.hpp> #include <boost/ratio/rational_constant.hpp>
This header provides forward declarations for the <boost/ratio/ratio.hpp>
file.
namespace boost { template <boost::intmax_t N, boost::intmax_t D = 1> classratio
; // ratio arithmetic template <class R1, class R2> structratio_add
; template <class R1, class R2> structratio_subtract
; template <class R1, class R2> structratio_multiply
; template <class R1, class R2> structratio_divide
; #ifdef BOOST_RATIO_EXTENSIONS template <class R,int P> structratio_power
; template <class R> structratio_negate
; template <class R> structratio_sign
; template <class R> structratio_abs
; template <class R1, class R2> structratio_gcd
; template <class R1, class R2> structratio_lcm
; #endif // ratio comparison template <class R1, class R2> structratio_equal
; template <class R1, class R2> structratio_not_equal
; template <class R1, class R2> structratio_less
; template <class R1, class R2> structratio_less_equal
; template <class R1, class R2> structratio_greater
; template <class R1, class R2> structratio_greater_equal
; // convenience SI typedefs typedef ratio<1LL, 1000000000000000000LL>atto
; typedef ratio<1LL, 1000000000000000LL>femto
; typedef ratio<1LL, 1000000000000LL>pico
; typedef ratio<1LL, 1000000000LL>nano
; typedef ratio<1LL, 1000000LL>micro
; typedef ratio<1LL, 1000LL>milli
; typedef ratio<1LL, 100LL>centi
; typedef ratio<1LL, 10LL>deci
; typedef ratio< 10LL, 1LL>deca
; typedef ratio< 100LL, 1LL>hecto
; typedef ratio< 1000LL, 1LL>kilo
; typedef ratio< 1000000LL, 1LL>mega
; typedef ratio< 1000000000LL, 1LL>giga
; typedef ratio< 1000000000000LL, 1LL>tera
; typedef ratio< 1000000000000000LL, 1LL>peta
; typedef ratio<1000000000000000000LL, 1LL>exa
; #ifdef BOOST_RATIO_EXTENSIONS // convenience IEC typedefs typedef ratio< 1024LL>kibi
; typedef ratio< 1024LL*1024LL>mebi
; typedef ratio< 1024LL*1024LL*1024LL>gibi
; typedef ratio< 1024LL*1024LL*1024LL*1024LL>tebi
; typedef ratio< 1024LL*1024LL*1024LL*1024LL*1024LL>pebi
; typedef ratio<1024LL*1024LL*1024LL*1024LL*1024LL*1024LL>exbi
; #endif }
ratio
is a facility which is useful in specifying compile-time rational constants.
Compile-time rational arithmetic is supported with protection against overflow
and divide by zero. Such a facility is very handy to efficiently represent
1/3 of a nanosecond, or to specify an inch in terms of meters (for example
254/10000 meters - which ratio
will reduce to 127/5000
meters).
template <boost::intmax_t N, boost::intmax_t D>
class ratio {
public:
static const boost::intmax_t num;
static const boost::intmax_t den;
typedef ratio<num, den> type;
#ifdef BOOST_RATIO_EXTENSIONS
typedef mpl::rational_c_tag tag;
typedef boost::rational<boost::intmax_t> value_type;
typedef boost::intmax_t num_type;
typedef boost::intmax_t den_type;
ratio() = default;
template <intmax_t _N2, intmax_t _D2>
ratio(const ratio<_N2, _D2>&);
template <intmax_t _N2, intmax_t _D2>
ratio& operator=(const ratio<_N2, _D2>&);
static value_type value();
value_type operator()() const;
#endif
};
A diagnostic will be emitted if ratio
is instantiated with
D ==
0
, or if the absolute value of
N
or D
cannot be represented. Note: These rules
ensure that infinite ratios are avoided and that for any negative input,
there exists a representable value of its absolute value which is positive.
In a two's complement representation, this excludes the most negative
value.
The members num and den will be normalized values of the template arguments
N and D computed as follows. Let gcd
denote the greatest common divisor of N
's
absolute value and of D
's
absolute value. Then:
num
has the value
sign(N)*sign(D)*abs(N)/gcd
.
den
has the value
abs(D)/gcd
.
The nested typedef type
denotes the normalized form of this ratio
type. It should be used
when the normalized form of the template arguments are required, since
the arguments are not necessarily normalized.
Two ratio
classes
and ratio
<N1,D1>
have the same normalized form if ratio
<N2,D2>
is the same type as ratio
<N1,D1>::typeratio
<N2,D2>::type
Included only if BOOST_RATIO_EXTENSIONS
is
defined.
ratio()=default;
Effects: Constructs a ratio
object.
template <intmax_t N2, intmax_t D2>
ratio(const ratio
<N2, D2>& r);
Effects: Constructs a ratio
object.
Remarks: This constructor will not
participate in overload resolution unless r
has the same normalized form as *this
.
template <intmax_t N2, intmax_t D2>ratio
& operator=(constratio
<N2, D2>& r);
Effects: Assigns a ratio
object.
Returns: *this.
Remarks: This operator will not participate
in overload resolution unless r
has the same normalized form as *this
.
Included only if BOOST_RATIO_EXTENSIONS
is
defined.
In order to work with Boost.MPL numeric metafunctions as a Rational Constant, the following has beed added:
typedef mpl::rational_c_tag tag; typedef boost::rational<boost::intmax_t> value_type; typedef boost::intmax_t num_type; typedef boost::intmax_t den_type;
Included only if BOOST_RATIO_EXTENSIONS
is
defined.
static value_type value(); value_type operator()() const;
Returns: value_type(num,den);
For each of the class templates in this section, each template parameter
refers to a ratio
. If
the implementation is unable to form the indicated ratio
due to overflow, a diagnostic
will be issued.
ratio_add<>
template <class R1, class R2> struct ratio_add { typedef [/see below] type; };
The nested typedef type
is a synonym for
.
ratio
<R1::num * R2::den + R2::num * R1::den, R1::den * R2::den>::type
ratio_subtract<>
template <class R1, class R2> struct ratio_subtract { typedef [/see below] type; };
The nested typedef type
is a synonym for
.
ratio
<R1::num * R2::den - R2::num * R1::den, R1::den * R2::den>::type
ratio_multiply<>
template <class R1, class R2> struct ratio_multiply { typedef [/see below] type; };
The nested typedef type
is a synonym for
.
ratio
<R1::num * R2::num, R1::den * R2::den>::type
ratio_divide<>
template <class R1, class R2> struct ratio_divide { typedef [/see below] type; };
The nested typedef type
is a synonym for
.
ratio
<R1::num * R2::den, R2::num * R1::den>::type
ratio_power<>
Included only if BOOST_RATIO_EXTENSIONS
is defined.
template <class R, int P> struct ratio_power { typedef [/see below] type; };
The nested typedef type
is a synonym for R*
*R
P times.
ratio_negate<>
Included only if BOOST_RATIO_EXTENSIONS
is defined.
This extension of the C++ standard helps in the definition of some Boost.MPL numeric metafunctions.
template <class R> struct ratio_negate { typedef [/see below] type; };
The nested typedef type
is a synonym for
.
ratio
<-R::num, R::den>::type
ratio_abs<>
Included only if BOOST_RATIO_EXTENSIONS
is defined.
This extension of the C++ standard helps in the definition of some Boost.MPL numeric metafunctions.
template <class R> struct ratio_abs { typedef [/see below] type; };
The nested typedef type
is a synonym for
.
ratio
<abs_c<intmax_t,R::num>::value, R::den>::type
ratio_sign<>
Included only if BOOST_RATIO_EXTENSIONS
is defined.
This extension of the C++ standard helps in the definition of some Boost.MPL numeric metafunctions.
template <class R> struct ratio_sign { typedef [/see below] type; };
The nested typedef type
is a synonym for sign_c<intmax_t,R::num>::type
.
ratio_gcd<>
Included only if BOOST_RATIO_EXTENSIONS
is defined.
This extension of the C++ standard helps in the definition of some Boost.MPL numeric metafunctions.
template <class R1, class R2> struct ratio_gcd { typedef [/see below] type; };
The nested typedef type
is a synonym for ratio<gcd_c<intmax_t, R1::num, R2::num>::value, mpl::lcm_c<intmax_t, R1::den, R2::den>::value>::type
.
ratio_lcm<>
Included only if BOOST_RATIO_EXTENSIONS
is defined.
This extension of the C++ standard helps in the definition of some Boost.MPL numeric metafunctions.
template <class R1, class R2> struct ratio_lcm { typedef [/see below] type; };
The nested typedef type
is a synonym for ratio<lcm_c<intmax_t, R1::num, R2::num>::value, gcd_c<intmax_t, R1::den, R2::den>::value>::type
.
ratio_equal<>
template <class R1, class R2> struct ratio_equal : public boost::integral_constant<bool, [/see below] > {};
If R1::num == R2::num && R1::den == R2::den, ratio_equal derives from true_type, else derives from false_type.
ratio_not_equal<>
template <class R1, class R2> struct ratio_not_equal : public boost::integral_constant<bool, !ratio_equal<R1, R2>::value> {};
ratio_less<>
template <class R1, class R2> struct ratio_less : public boost::integral_constant<bool, [/see below] > {};
If R1::num * R2::den < R2::num * R1::den, ratio_less derives from true_type, else derives from false_type.
ratio_less_equal<>
template <class R1, class R2> struct ratio_less_equal : public boost::integral_constant<bool, !ratio_less<R2, R1>::value> {};
ratio_greater<>
template <class R1, class R2> struct ratio_greater : public boost::integral_constant<bool, ratio_less<R2, R1>::value> {};
ratio_greater_equal<>
template <class R1, class R2> struct ratio_greater_equal : public boost::integral_constant<bool, !ratio_less<R1, R2>::value> {};
The International
System of Units specifies twenty SI prefixes. Boost.Ratio
defines all except yocto
,
zepto
, zetta
, and yotta
// convenience SI typedefs typedefratio
<1LL, 1000000000000000000LL> atto; typedefratio
<1LL, 1000000000000000LL> femto; typedefratio
<1LL, 1000000000000LL> pico; typedefratio
<1LL, 1000000000LL> nano; typedefratio
<1LL, 1000000LL> micro; typedefratio
<1LL, 1000LL> milli; typedefratio
<1LL, 100LL> centi; typedefratio
<1LL, 10LL> deci; typedefratio
< 10LL, 1LL> deca; typedefratio
< 100LL, 1LL> hecto; typedefratio
< 1000LL, 1LL> kilo; typedefratio
< 1000000LL, 1LL> mega; typedefratio
< 1000000000LL, 1LL> giga; typedefratio
< 1000000000000LL, 1LL> tera; typedefratio
< 1000000000000000LL, 1LL> peta; typedefratio
<1000000000000000000LL, 1LL> exa;
Included only if BOOST_RATIO_EXTENSIONS
is defined.
The Specific
units of IEC 60027-2 A.2 and ISO/IEC 80000 specifies height IEC
prefixes. Boost.Ratio defines all except
zebi
and yobi
// convenience ETC typedefs typedef ratio< 1024LL> kibi; typedef ratio< 1024LL*1024LL> mebi; typedef ratio< 1024LL*1024LL*1024LL> gibi; typedef ratio< 1024LL*1024LL*1024LL*1024LL> tebi; typedef ratio< 1024LL*1024LL*1024LL*1024LL*1024LL> pebi; typedef ratio<1024LL*1024LL*1024LL*1024LL*1024LL*1024LL> exbi;
The following are limitations of Boost.Ratio relative to the specification in the C++0x draft standard:
yocto
,
zepto
, zetta
, and yotta
-- are to be conditionally supported, if the range of intmax_t
allows, but are not supported
by Boost.Ratio.
constexpr
intmax_t
(see Ratio
values should be constexpr), but for compiler not supporting
constexpr
today, Boost.Ratio uses static
const intmax_t
instead.
When BOOST_RATIO_EXTENSIONS
is defined Boost.Ratio provides the
following extensions:
This header provides ratio_string<>
which can generate a textual representation
of a ratio<>
in the form of a std::basic_string<>
.
These strings can be useful for I/O.
namespace boost { template <class Ratio, class charT> struct ratio_string; template <> struct ratio_string<atto, char>; template <> struct ratio_string<atto, char16_t>; template <> struct ratio_string<atto, char32_t>; template <> struct ratio_string<atto, wchar_t>; template <> struct ratio_string<femto, char>; template <> struct ratio_string<femto, char16_t>; template <> struct ratio_string<femto, char32_t>; template <> struct ratio_string<femto, wchar_t>; template <> struct ratio_string<pico, char>; template <> struct ratio_string<pico, char16_t>; template <> struct ratio_string<pico, char32_t>; template <> struct ratio_string<pico, wchar_t>; template <> struct ratio_string<nano, char>; template <> struct ratio_string<nano, char16_t>; template <> struct ratio_string<nano, char32_t>; template <> struct ratio_string<nano, wchar_t>; template <> struct ratio_string<micro, char>; template <> struct ratio_string<micro, char16_t>; template <> struct ratio_string<micro, char32_t>; template <> struct ratio_string<micro, wchar_t>; template <> struct ratio_string<milli, char>; template <> struct ratio_string<milli, char16_t>; template <> struct ratio_string<milli, char32_t>; template <> struct ratio_string<milli, wchar_t>; template <> struct ratio_string<centi, char>; template <> struct ratio_string<centi, char16_t>; template <> struct ratio_string<centi, char32_t>; template <> struct ratio_string<centi, wchar_t>; template <> struct ratio_string<deci, char>; template <> struct ratio_string<deci, char16_t>; template <> struct ratio_string<deci, char32_t>; template <> struct ratio_string<deci, wchar_t>; template <> struct ratio_string<deca, char>; template <> struct ratio_string<deca, char16_t>; template <> struct ratio_string<deca, char32_t>; template <> struct ratio_string<deca, wchar_t>; template <> struct ratio_string<hecto, char>; template <> struct ratio_string<hecto, char16_t>; template <> struct ratio_string<hecto, char32_t>; template <> struct ratio_string<hecto, wchar_t>; template <> struct ratio_string<kilo, char>; template <> struct ratio_string<kilo, char16_t>; template <> struct ratio_string<kilo, char32_t>; template <> struct ratio_string<kilo, wchar_t>; template <> struct ratio_string<mega, char>; template <> struct ratio_string<mega, char16_t>; template <> struct ratio_string<mega, char32_t>; template <> struct ratio_string<mega, wchar_t>; template <> struct ratio_string<giga, char>; template <> struct ratio_string<giga, char16_t>; template <> struct ratio_string<giga, char32_t>; template <> struct ratio_string<giga, wchar_t>; template <> struct ratio_string<tera, char>; template <> struct ratio_string<tera, char16_t>; template <> struct ratio_string<tera, char32_t>; template <> struct ratio_string<tera, wchar_t>; template <> struct ratio_string<peta, char>; template <> struct ratio_string<peta, char16_t>; template <> struct ratio_string<peta, char32_t>; template <> struct ratio_string<peta, wchar_t>; template <> struct ratio_string<exa, char>; template <> struct ratio_string<exa, char16_t>; template <> struct ratio_string<exa, char32_t>; template <> struct ratio_string<exa, wchar_t>; template <> struct ratio_string<kibi, char>; template <> struct ratio_string<kibi, char16_t>; template <> struct ratio_string<kibi, char32_t>; template <> struct ratio_string<kibi, wchar_t>; template <> struct ratio_string<mebi, char>; template <> struct ratio_string<mebi, char16_t>; template <> struct ratio_string<mebi, char32_t>; template <> struct ratio_string<mebi, wchar_t>; template <> struct ratio_string<gibi, char>; template <> struct ratio_string<gibi, char16_t>; template <> struct ratio_string<gibi, char32_t>; template <> struct ratio_string<gibi, wchar_t>; template <> struct ratio_string<tebi, char>; template <> struct ratio_string<tebi, char16_t>; template <> struct ratio_string<tebi, char32_t>; template <> struct ratio_string<tebi, wchar_t>; template <> struct ratio_string<pebi, char>; template <> struct ratio_string<pebi, char16_t>; template <> struct ratio_string<pebi, char32_t>; template <> struct ratio_string<pebi, wchar_t>; template <> struct ratio_string<yobi, char>; template <> struct ratio_string<yobi, char16_t>; template <> struct ratio_string<yobi, char32_t>; template <> struct ratio_string<yobi, wchar_t>; }
template <class Ratio, class CharT> struct ratio_string { static std::basic_string<CharT> symbol(); static std::basic_string<CharT> prefix(); static std::basic_string<CharT> short_name(); // DEPRECATED V2 static std::basic_string<CharT> long_name(); // DEPRECATED V2 };
The class template ratio_string provides textual representations of the associated ratio appropriate for the character type charT.
The primary template provides generic strings. Specializations provide the same static member functions but these functions return the English SI prefix and symbol names as specified by the General Conference on Weights and Measures.
template<class Ratio, class CharT> basic_string<charT> ratio_string<Ratio, CharT>::prefix();
Returns: A basic_string of the form: [Ratio::num/Ratio::den]
Example: ratio_string<ratio<2, 60>, wchar_t>::prefix()
returns L"[1/30]"
.
template<class Ratio, class CharT> basic_string<charT> ratio_string<Ratio, CharT>::symbol();
Returns: prefix().
template<class Ratio, class CharT> basic_string<charT> ratio_string<Ratio, CharT>::long_name();
Returns: prefix().
template<class Ratio, class CharT> basic_string<charT> ratio_string<Ratio, CharT>::short_name();
Returns: symbol().
With compilers supporting char16_t and char32_t and with a standard library don't providing std::u16string and std::u32string you will need to define the macros BOOST_NO_CXX11_U16STRING and BOOST_NO_CXX11_U32STRING until Boost.Config defines them.
For each specialization the table gives the return value for prefix()
and symbol()
.
Table 1.1. The return values of specializations of ratio_string
Specialization |
|
|
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<boost/ratio/mpl/rational_constant.hpp>
<boost/ratio/mpl/rational_c_tag.hpp>
<boost/ratio/mpl/numeric_cast.hpp>
<boost/ratio/mpl/arithmetic.hpp>
<boost/ratio/mpl/plus.hpp>
<boost/ratio/mpl/minus.hpp>
<boost/ratio/mpl/times.hpp>
<boost/ratio/mpl/divides.hpp>
<boost/ratio/mpl/gcd.hpp>
<boost/ratio/mpl/lcm.hpp>
<boost/ratio/mpl/negate.hpp>
<boost/ratio/mpl/abs.hpp>
<boost/ratio/mpl/sign.hpp>
<boost/ratio/mpl/comparison.hpp>
<boost/ratio/mpl/equal_to.hpp>
<boost/ratio/mpl/not_equal_to.hpp>
<boost/ratio/mpl/less.hpp>
<boost/ratio/mpl/less_equal.hpp>
<boost/ratio/mpl/greater.hpp>
<boost/ratio/mpl/greater_equal.hpp>
A Rational Constant is a holder class for a compile-time value of a rational type. Every Rational Constant is also a nullary Metafunction, returning itself. A rational constant object is implicitly convertible to the corresponding run-time value of the rational type.
In the following table and subsequent specifications, r is a model of Rational Constant.
Expression |
Type |
Complexity |
---|---|---|
|
|
Constant time |
|
A rational type |
Constant time |
|
An integral type |
Constant time |
|
An integral type |
Constant time |
|
An Integral constant expression |
Constant time |
|
An Integral constant expression |
Constant time |
|
Constant time |
|
|
Constant time |
Expression |
Semantics |
---|---|
|
r's tag type; r::tag::value is r's conversion rank. |
|
A cv-unqualified type of |
|
A cv-unqualified type of |
|
A cv-unqualified type of |
|
The numerator of the rational constant |
|
The denominator of the rational constant |
|
equal_to<n::type,n>::value == true. |
|
|
ratio
<>
This header includes all the rational constant related header files
#include <boost/ratio/mpl/rational_c_tag.hpp> #include <boost/ratio/mpl/numeric_cast.hpp> #include <boost/ratio/mpl/arithmetic.hpp> #include <boost/ratio/mpl/comparison.hpp>
namespace boost { namespace mpl { struct rational_c_tag : int_<10> {}; } }
namespace boost { namespace mpl { template<> struct numeric_cast< integral_c_tag,rational_c_tag >; } }
A Integral Constant is seen as a ratio with numerator the Integral Constant value and denominator 1.
template<> struct numeric_cast< integral_c_tag,rational_c_tag > { template< typename N > struct apply : ratio< N::value, 1 > { }; };
This header includes all the rational constant arithmetic MPL specializations.
#include <boost/ratio/mpl/plus.hpp> #include <boost/ratio/mpl/minus.hpp> #include <boost/ratio/mpl/times.hpp> #include <boost/ratio/mpl/divides.hpp> #include <boost/ratio/mpl/negate.hpp> #include <boost/ratio/mpl/abs.hpp> #include <boost/ratio/mpl/sign.hpp> #include <boost/ratio/mpl/gcd.hpp> #include <boost/ratio/mpl/lcm.hpp>
namespace boost { namespace mpl { template<> struct plus_impl< rational_c_tag,rational_c_tag >; } }
namespace boost { namespace mpl { template<> struct minus_impl< rational_c_tag,rational_c_tag >; } }
The specialization relays on the ratio_subtract
template class.
template<>
struct plus_impl< rational_c_tag,rational_c_tag >
{
template< typename R1, typename R2 > struct apply
: ratio_subtract
<R1, R2>
{
};
};
namespace boost { namespace mpl { template<> struct times_impl< rational_c_tag,rational_c_tag >; } }
The specialization relays on the ratio_multiply
template class.
template<>
struct times_impl< rational_c_tag,rational_c_tag >
{
template< typename R1, typename R2 > struct apply
: ratio_multiply
<R1, R2>
{
};
};
namespace boost { namespace mpl { template<> struct divides_impl< rational_c_tag,rational_c_tag >; } }
The specialization relays on the ratio_divide
template class.
template<>
struct divides_impl< rational_c_tag,rational_c_tag >
{
template< typename R1, typename R2 > struct apply
: ratio_divide
<R1, R2>
{
};
};
namespace boost { namespace mpl { template<> struct gcd_impl< rational_c_tag,rational_c_tag >; } }
namespace boost { namespace mpl { template<> struct lcm_impl< rational_c_tag,rational_c_tag >; } }
namespace boost { namespace mpl { template<> struct negate_impl< rational_c_tag >; } }
The specialization relays on the ratio_negate
template class.
template<>
struct negate_impl< rational_c_tag >
{
template< typename R > struct apply
: ratio_negate
<R>
{
};
};
namespace boost { namespace mpl { template<> struct abs_impl< rational_c_tag >; } }
namespace boost { namespace mpl { template<> struct sign_impl< rational_c_tag >; } }
The specialization relays on the ratio_sign
template class.
template<>
struct sign_impl< rational_c_tag >
{
template< typename R > struct apply
: ratio_sign
<R>
{
};
};
This header includes all the rational constant comparison MPL specializations.
#include <boost/ratio/mpl/equal_to.hpp> #include <boost/ratio/mpl/not_equal_to.hpp> #include <boost/ratio/mpl/less.hpp> #include <boost/ratio/mpl/less_equal.hpp> #include <boost/ratio/mpl/greater.hpp> #include <boost/ratio/mpl/greater_equal.hpp>
namespace boost { namespace mpl { template<> struct equal_to_impl< rational_c_tag,rational_c_tag >; } }
The specialization relays on the ratio_equal
template class.
template<>
struct equal_to_impl< rational_c_tag,rational_c_tag >
{
template< typename R1, typename R2 > struct apply
: ratio_equal
<R1, R2>
{
};
};
namespace boost { namespace mpl { template<> struct not_equal_to_impl< rational_c_tag,rational_c_tag >; } }
The specialization relays on the ratio_not_equal
template class.
template<>
struct not_equal_to_impl< rational_c_tag,rational_c_tag >
{
template< typename R1, typename R2 > struct apply
: ratio_not_equal
<R1, R2>
{
};
};
namespace boost { namespace mpl { template<> struct less_impl< rational_c_tag,rational_c_tag >; } }
The specialization relays on the ratio_less
template class.
template<> struct less_impl< rational_c_tag,rational_c_tag > { template< typename R1, typename R2 > struct apply : ratio_less<R1, R2> { }; };
namespace boost { namespace mpl { template<> struct less_equal_impl< rational_c_tag,rational_c_tag >; } }
The specialization relays on the ratio_less_equal
template class.
template<> struct less_equal_impl< rational_c_tag,rational_c_tag > { template< typename R1, typename R2 > struct apply : ratio_less_equal<R1, R2> { }; };
namespace boost { namespace mpl { template<> struct greater_impl< rational_c_tag,rational_c_tag >; } }
The specialization relays on the ratio_greater
template class.
template<> struct greater_impl< rational_c_tag,rational_c_tag > { template< typename R1, typename R2 > struct apply : ratio_greater<R1, R2> { }; };
namespace boost { namespace mpl { template<> struct greater_equal_impl< rational_c_tag,rational_c_tag >; } }
The specialization relays on the ratio_greater_equal
template
class.
template<> struct greater_equal_impl< rational_c_tag,rational_c_tag > { template< typename R1, typename R2 > struct apply : ratio_greater_equal<R1, R2> { }; };
New Features:
Fixes:
Features:
Deprecated:
The ratio_string<>::short_name and ratio_string<>::long_name are deprecated. Use ratio_string<>::symbol and ratio_string<>::prefix respectively. These functions be removed in 1.55.
Fixes:
Fixes:
Features:
Fixes:
Features:
Fixes:
Test:
Current N3000 doesn't allows to copy-construct or assign ratio instances of ratio classes having the same normalized form.
This simple example
ratio
<1,3> r1;ratio
<3,9> r2; r1 = r2; // (1)
fails to compile in (1). Other example
ratio
<1,3> r1;ratio_subtract
<ratio
<2,3>,ratio
<1,3> > r2=r1; // (2)
The type of
could be ratio_subtract
<ratio
<2,3>,ratio
<1,3> >
so the compilation could fail in (2).
It could also be ratio
<3,9>ratio
<1,3> and the compilation
succeeds.
The current resolution of issue LWG 1281 acknowledges the need for a nested type typedef, so Boost.Ratio is tracking the likely final version of std::ratio.
When the result is representable, but a simple application of arithmetic
rules would result in overflow, e.g. ratio_multiply<ratio<INTMAX_MAX,2>,ratio<2,INTMAX_MAX>>
can be reduced to ratio<1,1>
, but
the direct result of ratio<INTMAX_MAX*2,INTMAX_MAX*2>
would
result in overflow.
Boost.Ratio implements some simplifications in order to reduce the possibility of overflow. The general ideas are:
num
and den
ratio<>
fields are normalized.
The following subsections cover each case in more detail.
ratio_add
In
(n1/d1)+(n2/d2)=(n1*d2+n2*d1)/(d1*d2)
either n1*d2+n2*d1 or d1*d2 can overflow.
( (n1 * d2) + (n2 * d1) ) -------------------------- (d1 * d2)
Dividing by gcd(d1,d2) on both num and den
( (n1 * (d2/gcd(d1,d2))) + (n2 * (d1/gcd(d1,d2))) ) ---------------------------------------------------- ((d1 * d2) / gcd(d1,d2))
Multiplying and diving by gcd(n1,n2) in numerator
( ((gcd(n1,n2)*(n1/gcd(n1,n2))) * (d2/gcd(d1,d2))) + ((gcd(n1,n2)*(n2/gcd(n1,n2))) * (d1/gcd(d1,d2))) ) -------------------------------------------------- ( (d1 * d2) / gcd(d1,d2) )
Factorizing gcd(n1,n2)
( gcd(n1,n2) * ( ((n1/gcd(n1,n2)) * (d2/gcd(d1,d2))) + ((n2/gcd(n1,n2)) * (d1/gcd(d1,d2))) ) ) ------------------------------------------------------------------------------- ( (d1 * d2) / gcd(d1,d2) )
Regrouping
( gcd(n1,n2) * ( ((n1/gcd(n1,n2)) * (d2/gcd(d1,d2))) + ((n2/gcd(n1,n2)) * (d1/gcd(d1,d2))) ) ) ------------------------------------------------------------------------------- ( (d1 / gcd(d1,d2)) * d2 )
Dividing by (d1 / gcd(d1,d2))
( ( gcd(n1,n2) / (d1 / gcd(d1,d2)) ) * ( ((n1/gcd(n1,n2)) * (d2/gcd(d1,d2))) + ((n2/gcd(n1,n2)) * (d1/gcd(d1,d2))) ) ) ------------------------------------------------------------------------------- d2
Dividing by d2
( gcd(n1,n2) / (d1 / gcd(d1,d2)) ) * ( ((n1/gcd(n1,n2)) * (d2/gcd(d1,d2))) + ((n2/gcd(n1,n2)) * (d1/gcd(d1,d2))) / d2 )
This expression correspond to the multiply of two ratios that have less risk of overflow as the initial numerators and denominators appear now in most of the cases divided by a gcd.
For ratio_subtract the reasoning is the same.
ratio_multiply
In
(n1/d1)*(n2/d2)=((n1*n2)/(d1*d2))
either n1*n2 or d1*d2 can overflow.
Dividing by gcc(n1,d2) numerator and denominator
(((n1/gcc(n1,d2))*n2) --------------------- (d1*(d2/gcc(n1,d2))))
Dividing by gcc(n2,d1)
((n1/gcc(n1,d2))*(n2/gcc(n2,d1))) --------------------------------- ((d1/gcc(n2,d1))*(d2/gcc(n1,d2)))
And now all the initial numerator and denominators have been reduced, avoiding the overflow.
For ratio_divide the reasoning is similar.
ratio_less
In order to evaluate
(n1/d1)<(n2/d2)
without moving to floating-point numbers, two techniques are used:
If sign(n1) < sign(n2) the result is true.
If sign(n1) == sign(n2) the result depends on the following after making the numerators positive
Let call Qi the integer division of ni and di, and Mi the modulo of ni and di.
ni = Qi * di + Mi and Mi < di
Form
((n1*d2)<(d1*n2))
we get
(((Q1 * d1 + M1)*d2)<(d1*((Q2 * d2 + M2))))
Developing
((Q1 * d1 * d2)+ (M1*d2))<((d1 * Q2 * d2) + (d1*M2))
Dividing by d1*d2
Q1 + (M1/d1) < Q2 + (M2/d2)
If Q1=Q2 the result depends on
(M1/d1) < (M2/d2)
If M1==0==M2 the result is false
If M1=0 M2!=0 the result is true
If M1!=0 M2==0 the result is false
If M1!=0 M2!=0 the result depends on
(d2/M2) < (d1/M1)
If Q1!=Q2, the result of
Q1 + (M1/d1) < Q2 + (M2/d2)
depends only on Q1 and Q2 as Qi are integers and (Mi/di) <1 because Mi<di.
if Q1>Q2, Q1==Q2+k, k>=1
Q2+k + (M1/d1) < Q2 + (M2/d2) k + (M1/d1) < (M2/d2) k < (M2/d2) - (M1/d1)
but the difference between two numbers between 0 and 1 can not be greater than 1, so the result is false.
if Q2>Q1, Q2==Q1+k, k>=1
Q1 + (M1/d1) < Q1+k + (M2/d2) (M1/d1) < k + (M2/d2) (M1/d1) - (M2/d2) < k
which is always true, so the result is true.
The following table recapitulates this analisys
ratio<n1,d1> |
ratio<n2,d2> |
Q1 |
Q2 |
M1 |
M2 |
Result |
---|---|---|---|---|---|---|
ratio<n1,d1> |
ratio<n2,d2> |
Q1 |
Q2 |
!=0 |
!=0 |
Q1 < Q2 |
ratio<n1,d1> |
ratio<n2,d2> |
Q |
Q |
0 |
0 |
false |
ratio<n1,d1> |
ratio<n2,d2> |
Q |
Q |
0 |
!=0 |
true |
ratio<n1,d1> |
ratio<n2,d2> |
Q |
Q |
!=0 |
0 |
false |
ratio<n1,d1> |
ratio<n2,d2> |
Q |
Q |
!=0 |
!=0 |
ratio_less<ratio<d2,M2>, ratio<d1/M1>> |
The library code was derived from Howard Hinnant's time2_demo
prototype. Many thanks to Howard for making his code available under the
Boost license. The original code was modified by Beman Dawes to conform to
Boost conventions.
time2_demo
contained this
comment:
Much thanks to Andrei Alexandrescu, Walter Brown, Peter Dimov, Jeff Garland, Terry Golubiewski, Daniel Krugler, Anthony Williams.
Howard Hinnant, who is the real author of the library, has provided valuable
feedback and suggestions during the development of the library. In particular,
The ratio_io.hpp source has been adapted from the experimental header <ratio_io>
from Howard Hinnant.
The acceptance review of Boost.Ratio took place between October 2nd and 11th 2010. Many thanks to Anthony Williams, the review manager, and to all the reviewers: Bruno Santos, Joel Falcou, Robert Stewart, Roland Bock, Tom Tan and Paul A. Bristol.
Thanks to Andrew Chinoff and Paul A. Bristol for his help polishing the documentation.
In order to test you need to run
bjam libs/ratio/test
You can also run a specific suite of test by doing
cd libs/chrono/test bjam ratio
Name |
kind |
Description |
Result |
Ticket |
---|---|---|---|---|
typedefs.pass |
run |
check the num/den are correct for the predefined typedefs |
Pass |
# |
ratio.pass |
run |
check the num/den are correctly simplified |
Pass |
# |
ratio1.fail |
compile-fails |
The template argument D shall not be zero |
Pass |
# |
ratio2.fail |
compile-fails |
the absolute values of the template arguments N and D shall be representable by type intmax_t |
Pass |
# |
ratio3.fail |
compile-fails |
the absolute values of the template arguments N and D shall be representable by type intmax_t |
Pass |
# |
Name |
kind |
Description |
Result |
Ticket |
---|---|---|---|---|
ratio_equal.pass |
run |
check ratio_equal metafunction class |
Pass |
# |
ratio_not_equal.pass |
run |
check ratio_not_equal metafunction class |
Pass |
# |
ratio_less.pass |
run |
check ratio_less metafunction class |
Pass |
# |
ratio_less_equal.pass |
run |
check ratio_less_equal metafunction class |
Pass |
# |
ratio_greater.pass |
run |
check ratio_greater metafunction class |
Pass |
# |
ratio_greater_equal.pass |
run |
check ratio_greater_equal metafunction class |
Pass |
# |
Name |
kind |
Description |
Result |
Ticket |
---|---|---|---|---|
ratio_add.pass |
run |
check ratio_add metafunction class |
Pass |
# |
ratio_subtract.pass |
run |
check ratio_subtract metafunction class |
Pass |
# |
ratio_multiply.pass |
run |
check ratio_multiply metafunction class |
Pass |
# |
ratio_divide.pass |
run |
check ratio_divide metafunction class |
Pass |
# |
ratio_add.fail |
compile-fails |
check ratio_add overflow metafunction class |
Pass |
# |
ratio_subtract.fail |
compile-fails |
check ratio_subtract underflow metafunction class |
Pass |
# |
ratio_multiply.fail |
compile-fails |
check ratio_multiply overflow metafunction class |
Pass |
# |
ratio_divide.fail |
compile-fails |
check ratio_divide overflow metafunction class |
Pass |
# |
Ticket |
Description |
Resolution |
State |
---|---|---|---|
1 |
result of metafunctions ratio_multiply and ratio_divide were not normalized ratios. |
Use of the nested ratio typedef type on ratio arithmetic operations. |
Closed |
2 |
INTMAX_C is not always defined. |
Replace INTMAX_C by BOOST_INTMAX_C until boost/cstdint.hpp ensures INTMAX_C is always defined. |
Closed |
3 |
MSVC reports a warning instead of an error when there is an integral constant overflow. |
manage with MSVC reporting a warning instead of an error when there is an integral constant overflow. |
Closed |
4 |
ration_less overflow on cases where it can be avoided. |
Change the algorithm as implemented in libc++. |
Closed |
Last revised: May 05, 2016 at 21:19:39 GMT |