Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

This is the documentation for an old version of Boost. Click here to view this page for the latest version.

boost/math/common_factor_rt.hpp

//  (C) Copyright Jeremy William Murphy 2016.

//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_MATH_COMMON_FACTOR_RT_HPP
#define BOOST_MATH_COMMON_FACTOR_RT_HPP

#include <boost/assert.hpp>
#include <boost/core/enable_if.hpp>
#include <boost/mpl/and.hpp>
#include <boost/type_traits.hpp>

#include <boost/config.hpp>  // for BOOST_NESTED_TEMPLATE, etc.
#include <boost/limits.hpp>  // for std::numeric_limits
#include <climits>           // for CHAR_MIN
#include <boost/detail/workaround.hpp>
#include <iterator>
#include <algorithm>
#include <limits>

#if (defined(BOOST_MSVC) || (defined(__clang__) && defined(__c2__)) || (defined(BOOST_INTEL) && defined(_MSC_VER))) && (defined(_M_IX86) || defined(_M_X64))
#include <intrin.h>
#endif

#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4127 4244)  // Conditional expression is constant
#endif

namespace boost {
   namespace math {

      template <class T, bool a = is_unsigned<T>::value || (std::numeric_limits<T>::is_specialized && !std::numeric_limits<T>::is_signed)>
      struct gcd_traits_abs_defaults
      {
         inline static const T& abs(const T& val) { return val; }
      };
      template <class T>
      struct gcd_traits_abs_defaults<T, false>
      {
         inline static T abs(const T& val)
         {
            using std::abs;
            return abs(val);
         }
      };

      template <class T>
      struct gcd_traits_defaults : public gcd_traits_abs_defaults<T>
      {
         BOOST_FORCEINLINE static unsigned make_odd(T& val)
         {
            unsigned r = 0;
            while(!(val & 1u))
            {
               val >>= 1;
               ++r;
            }
            return r;
         }
         inline static bool less(const T& a, const T& b)
         {
            return a < b;
         }

         enum method_type
         {
            method_euclid = 0,
            method_binary = 1,
            method_mixed = 2,
         };

         static const method_type method =
            boost::has_right_shift_assign<T>::value && boost::has_left_shift_assign<T>::value && boost::has_less<T>::value && boost::has_modulus<T>::value
            ? method_mixed :
            boost::has_right_shift_assign<T>::value && boost::has_left_shift_assign<T>::value && boost::has_less<T>::value
            ? method_binary : method_euclid;
      };
      //
      // Default gcd_traits just inherits from defaults:
      //
      template <class T>
      struct gcd_traits : public gcd_traits_defaults<T> {};
      //
      // Special handling for polynomials:
      //
      namespace tools {
         template <class T>
         class polynomial;
      }

      template <class T>
      struct gcd_traits<boost::math::tools::polynomial<T> > : public gcd_traits_defaults<T>
      {
         static const boost::math::tools::polynomial<T>& abs(const boost::math::tools::polynomial<T>& val) { return val; }
      };
      //
      // Some platforms have fast bitscan operations, that allow us to implement
      // make_odd much more efficiently:
      //
#if (defined(BOOST_MSVC) || (defined(__clang__) && defined(__c2__)) || (defined(BOOST_INTEL) && defined(_MSC_VER))) && (defined(_M_IX86) || defined(_M_X64))
#pragma intrinsic(_BitScanForward,)
      template <>
      struct gcd_traits<unsigned long> : public gcd_traits_defaults<unsigned long>
      {
         BOOST_FORCEINLINE static unsigned find_lsb(unsigned long val)
         {
            unsigned long result;
            _BitScanForward(&result, val);
            return result;
         }
         BOOST_FORCEINLINE static unsigned make_odd(unsigned long& val)
         {
            unsigned result = find_lsb(val);
            val >>= result;
            return result;
         }
      };

#ifdef _M_X64
#pragma intrinsic(_BitScanForward64)
      template <>
      struct gcd_traits<unsigned __int64> : public gcd_traits_defaults<unsigned __int64>
      {
         BOOST_FORCEINLINE static unsigned find_lsb(unsigned __int64 mask)
         {
            unsigned long result;
            _BitScanForward64(&result, mask);
            return result;
         }
         BOOST_FORCEINLINE static unsigned make_odd(unsigned __int64& val)
         {
            unsigned result = find_lsb(val);
            val >>= result;
            return result;
         }
      };
#endif
      //
      // Other integer type are trivial adaptations of the above,
      // this works for signed types too, as by the time these functions
      // are called, all values are > 0.
      //
      template <> struct gcd_traits<long> : public gcd_traits_defaults<long> 
      { BOOST_FORCEINLINE static unsigned make_odd(long& val){ unsigned result = gcd_traits<unsigned long>::find_lsb(val); val >>= result; return result; } };
      template <> struct gcd_traits<unsigned int> : public gcd_traits_defaults<unsigned int> 
      { BOOST_FORCEINLINE static unsigned make_odd(unsigned int& val){ unsigned result = gcd_traits<unsigned long>::find_lsb(val); val >>= result; return result; } };
      template <> struct gcd_traits<int> : public gcd_traits_defaults<int> 
      { BOOST_FORCEINLINE static unsigned make_odd(int& val){ unsigned result = gcd_traits<unsigned long>::find_lsb(val); val >>= result; return result; } };
      template <> struct gcd_traits<unsigned short> : public gcd_traits_defaults<unsigned short> 
      { BOOST_FORCEINLINE static unsigned make_odd(unsigned short& val){ unsigned result = gcd_traits<unsigned long>::find_lsb(val); val >>= result; return result; } };
      template <> struct gcd_traits<short> : public gcd_traits_defaults<short> 
      { BOOST_FORCEINLINE static unsigned make_odd(short& val){ unsigned result = gcd_traits<unsigned long>::find_lsb(val); val >>= result; return result; } };
      template <> struct gcd_traits<unsigned char> : public gcd_traits_defaults<unsigned char> 
      { BOOST_FORCEINLINE static unsigned make_odd(unsigned char& val){ unsigned result = gcd_traits<unsigned long>::find_lsb(val); val >>= result; return result; } };
      template <> struct gcd_traits<signed char> : public gcd_traits_defaults<signed char> 
      { BOOST_FORCEINLINE static signed make_odd(signed char& val){ signed result = gcd_traits<unsigned long>::find_lsb(val); val >>= result; return result; } };
      template <> struct gcd_traits<char> : public gcd_traits_defaults<char> 
      { BOOST_FORCEINLINE static unsigned make_odd(char& val){ unsigned result = gcd_traits<unsigned long>::find_lsb(val); val >>= result; return result; } };
      template <> struct gcd_traits<wchar_t> : public gcd_traits_defaults<wchar_t> 
      { BOOST_FORCEINLINE static unsigned make_odd(wchar_t& val){ unsigned result = gcd_traits<unsigned long>::find_lsb(val); val >>= result; return result; } };
#ifdef _M_X64
      template <> struct gcd_traits<__int64> : public gcd_traits_defaults<__int64> 
      { BOOST_FORCEINLINE static unsigned make_odd(__int64& val){ unsigned result = gcd_traits<unsigned __int64>::find_lsb(val); val >>= result; return result; } };
#endif

#elif defined(BOOST_GCC) || defined(__clang__) || (defined(BOOST_INTEL) && defined(__GNUC__))

      template <>
      struct gcd_traits<unsigned> : public gcd_traits_defaults<unsigned>
      {
         BOOST_FORCEINLINE static unsigned find_lsb(unsigned mask)
         {
            return __builtin_ctz(mask);
         }
         BOOST_FORCEINLINE static unsigned make_odd(unsigned& val)
         {
            unsigned result = find_lsb(val);
            val >>= result;
            return result;
         }
      };
      template <>
      struct gcd_traits<unsigned long> : public gcd_traits_defaults<unsigned long>
      {
         BOOST_FORCEINLINE static unsigned find_lsb(unsigned long mask)
         {
            return __builtin_ctzl(mask);
         }
         BOOST_FORCEINLINE static unsigned make_odd(unsigned long& val)
         {
            unsigned result = find_lsb(val);
            val >>= result;
            return result;
         }
      };
      template <>
      struct gcd_traits<boost::ulong_long_type> : public gcd_traits_defaults<boost::ulong_long_type>
      {
         BOOST_FORCEINLINE static unsigned find_lsb(boost::ulong_long_type mask)
         {
            return __builtin_ctzll(mask);
         }
         BOOST_FORCEINLINE static unsigned make_odd(boost::ulong_long_type& val)
         {
            unsigned result = find_lsb(val);
            val >>= result;
            return result;
         }
      };
      //
      // Other integer type are trivial adaptations of the above,
      // this works for signed types too, as by the time these functions
      // are called, all values are > 0.
      //
      template <> struct gcd_traits<boost::long_long_type> : public gcd_traits_defaults<boost::long_long_type>
      {
         BOOST_FORCEINLINE static unsigned make_odd(boost::long_long_type& val) { unsigned result = gcd_traits<boost::ulong_long_type>::find_lsb(val); val >>= result; return result; }
      };
      template <> struct gcd_traits<long> : public gcd_traits_defaults<long>
      {
         BOOST_FORCEINLINE static unsigned make_odd(long& val) { unsigned result = gcd_traits<unsigned long>::find_lsb(val); val >>= result; return result; }
      };
      template <> struct gcd_traits<int> : public gcd_traits_defaults<int>
      {
         BOOST_FORCEINLINE static unsigned make_odd(int& val) { unsigned result = gcd_traits<unsigned long>::find_lsb(val); val >>= result; return result; }
      };
      template <> struct gcd_traits<unsigned short> : public gcd_traits_defaults<unsigned short>
      {
         BOOST_FORCEINLINE static unsigned make_odd(unsigned short& val) { unsigned result = gcd_traits<unsigned>::find_lsb(val); val >>= result; return result; }
      };
      template <> struct gcd_traits<short> : public gcd_traits_defaults<short>
      {
         BOOST_FORCEINLINE static unsigned make_odd(short& val) { unsigned result = gcd_traits<unsigned>::find_lsb(val); val >>= result; return result; }
      };
      template <> struct gcd_traits<unsigned char> : public gcd_traits_defaults<unsigned char>
      {
         BOOST_FORCEINLINE static unsigned make_odd(unsigned char& val) { unsigned result = gcd_traits<unsigned>::find_lsb(val); val >>= result; return result; }
      };
      template <> struct gcd_traits<signed char> : public gcd_traits_defaults<signed char>
      {
         BOOST_FORCEINLINE static signed make_odd(signed char& val) { signed result = gcd_traits<unsigned>::find_lsb(val); val >>= result; return result; }
      };
      template <> struct gcd_traits<char> : public gcd_traits_defaults<char>
      {
         BOOST_FORCEINLINE static unsigned make_odd(char& val) { unsigned result = gcd_traits<unsigned>::find_lsb(val); val >>= result; return result; }
      };
      template <> struct gcd_traits<wchar_t> : public gcd_traits_defaults<wchar_t>
      {
         BOOST_FORCEINLINE static unsigned make_odd(wchar_t& val) { unsigned result = gcd_traits<unsigned>::find_lsb(val); val >>= result; return result; }
      };
#endif

namespace detail
{
    
   //
   // The Mixed Binary Euclid Algorithm
   // Sidi Mohamed Sedjelmaci
   // Electronic Notes in Discrete Mathematics 35 (2009) 169�176
   //
   template <class T>
   T mixed_binary_gcd(T u, T v)
   {
      using std::swap;
      if(gcd_traits<T>::less(u, v))
         swap(u, v);

      unsigned shifts = 0;

      if(!u)
         return v;
      if(!v)
         return u;

      shifts = std::min(gcd_traits<T>::make_odd(u), gcd_traits<T>::make_odd(v));

      while(gcd_traits<T>::less(1, v))
      {
         u %= v;
         v -= u;
         if(!u)
            return v << shifts;
         if(!v)
            return u << shifts;
         gcd_traits<T>::make_odd(u);
         gcd_traits<T>::make_odd(v);
         if(gcd_traits<T>::less(u, v))
            swap(u, v);
      }
      return (v == 1 ? v : u) << shifts;
   }

    /** Stein gcd (aka 'binary gcd')
     * 
     * From Mathematics to Generic Programming, Alexander Stepanov, Daniel Rose
     */
    template <typename SteinDomain>
    SteinDomain Stein_gcd(SteinDomain m, SteinDomain n)
    {
        using std::swap;
        BOOST_ASSERT(m >= 0);
        BOOST_ASSERT(n >= 0);
        if (m == SteinDomain(0))
            return n;
        if (n == SteinDomain(0))
            return m;
        // m > 0 && n > 0
        int d_m = gcd_traits<SteinDomain>::make_odd(m);
        int d_n = gcd_traits<SteinDomain>::make_odd(n);
        // odd(m) && odd(n)
        while (m != n)
        {
            if (n > m)
                swap(n, m);
            m -= n;
            gcd_traits<SteinDomain>::make_odd(m);
        }
        // m == n
        m <<= std::min(d_m, d_n);
        return m;
    }

    
    /** Euclidean algorithm
     * 
     * From Mathematics to Generic Programming, Alexander Stepanov, Daniel Rose
     * 
     */
    template <typename EuclideanDomain>
    inline EuclideanDomain Euclid_gcd(EuclideanDomain a, EuclideanDomain b)
    {
        using std::swap;
        while (b != EuclideanDomain(0))
        {
            a %= b;
            swap(a, b);
        }
        return a;
    }


    template <typename T>
    inline BOOST_DEDUCED_TYPENAME enable_if_c<gcd_traits<T>::method == gcd_traits<T>::method_mixed, T>::type
       optimal_gcd_select(T const &a, T const &b)
    {
       return detail::mixed_binary_gcd(a, b);
    }

    template <typename T>
    inline BOOST_DEDUCED_TYPENAME enable_if_c<gcd_traits<T>::method == gcd_traits<T>::method_binary, T>::type
       optimal_gcd_select(T const &a, T const &b)
    {
       return detail::Stein_gcd(a, b);
    }

    template <typename T>
    inline BOOST_DEDUCED_TYPENAME enable_if_c<gcd_traits<T>::method == gcd_traits<T>::method_euclid, T>::type
       optimal_gcd_select(T const &a, T const &b)
    {
       return detail::Euclid_gcd(a, b);
    }

    template <class T>
    inline T lcm_imp(const T& a, const T& b)
    {
       T temp = boost::math::detail::optimal_gcd_select(a, b);
#if BOOST_WORKAROUND(BOOST_GCC_VERSION, < 40500)
       return (temp != T(0)) ? T(a / temp * b) : T(0);
#else
       return temp ? T(a / temp * b) : T(0);
#endif
    }

} // namespace detail


template <typename Integer>
inline Integer gcd(Integer const &a, Integer const &b)
{
    return detail::optimal_gcd_select(static_cast<Integer>(gcd_traits<Integer>::abs(a)), static_cast<Integer>(gcd_traits<Integer>::abs(b)));
}

template <typename Integer>
inline Integer lcm(Integer const &a, Integer const &b)
{
   return detail::lcm_imp(static_cast<Integer>(gcd_traits<Integer>::abs(a)), static_cast<Integer>(gcd_traits<Integer>::abs(b)));
}

/**
 * Knuth, The Art of Computer Programming: Volume 2, Third edition, 1998
 * Chapter 4.5.2, Algorithm C: Greatest common divisor of n integers.
 *
 * Knuth counts down from n to zero but we naturally go from first to last.
 * We also return the termination position because it might be useful to know.
 * 
 * Partly by quirk, partly by design, this algorithm is defined for n = 1, 
 * because the gcd of {x} is x. It is not defined for n = 0.
 * 
 * @tparam  I   Input iterator.
 * @return  The gcd of the range and the iterator position at termination.
 */
template <typename I>
std::pair<typename std::iterator_traits<I>::value_type, I>
gcd_range(I first, I last)
{
    BOOST_ASSERT(first != last);
    typedef typename std::iterator_traits<I>::value_type T;
    
    T d = *first++;
    while (d != T(1) && first != last)
    {
        d = gcd(d, *first);
        first++;
    }
    return std::make_pair(d, first);
}

}  // namespace math
}  // namespace boost

#ifdef BOOST_MSVC
#pragma warning(pop)
#endif

#endif  // BOOST_MATH_COMMON_FACTOR_RT_HPP