...one of the most highly
regarded and expertly designed C++ library projects in the
world.
— Herb Sutter and Andrei
Alexandrescu, C++
Coding Standards
Because T
might be of reference
type, in the sequel, those entries whose semantic depends on T
being of reference type or not will
be distinguished using the following convention:
optional<T
(not
a ref)>
,
the description corresponds only to the case where T
is not of reference type.
optional<T&>
, the description corresponds
only to the case where T
is of reference type.
optional<T>
, the description is the same for
both cases.
Note | |
---|---|
The following section contains various |
optional<T>::optional() noexcept;
optional
.
*this
is uninitialized.
optional<T> def ; assert ( !def ) ;
optional<T>::optional( none_t ) noexcept;
optional
uninitialized.
*this
is uninitialized.
T
's
default constructor is not called.
The expression boost::none
denotes an instance of boost::none_t
that can be used as the parameter.
#include <boost/none.hpp> optional<T> n(none) ; assert ( !n ) ;
optional<T
(not a ref)>::optional( T const& v )
is_copy_constructible<T>::value
is true
.
optional
.
*this
is initialized
and its value is a copy of v
.
T::T( T const&
)
throws.
T::T( T const&
)
is called.
T::T( T const&
);
in that case, this constructor
has no effect.
T v; optional<T> opt(v); assert ( *opt == v ) ;
optional<T&>::optional( T& ref )
optional
.
*this
is initialized
and its value is an instance of an internal type wrapping the reference
ref
.
T v; T& vref = v ; optional<T&> opt(vref); assert ( *opt == v ) ; ++ v ; // mutate referee assert (*opt == v);
optional<T
(not a ref)>::optional( T&& v )
is_move_constructible<T>::value
is true
.
optional
.
*this
is initialized
and its value is move-constructed from v
.
T::T( T&& )
throws.
T::T( T&& )
is called.
T::T( T&& );
in that case, the state of v
is determined by exception safety guarantees for T::T(T&&)
.
T v1, v2; optional<T> opt(std::move(v1)); assert ( *opt == v2 ) ;
optional<T&>::optional( T&& ref ) = delete
optional<T
(not a ref)>::optional( bool condition, T const& v ) ;
optional<T&> ::optional( bool condition, T& v ) ;
optional<T
(not a ref)>::optional( T const& v )
optional<T&> ::optional( T& v )
optional<T
(not a ref)>::optional()
optional<T&> ::optional()
optional<T
(not a ref)>::optional( optional const& rhs );
is_copy_constructible<T>::value
is true
.
optional
.
*this
is initialized and its value is a copy of the
value of rhs
; else
*this
is uninitialized.
T::T( T const&
)
throws.
T::T(T const& )
is called.
T::T( T const&
);
in that case, this constructor
has no effect.
optional<T> uninit ; assert (!uninit); optional<T> uinit2 ( uninit ) ; assert ( uninit2 == uninit ); optional<T> init( T(2) ); assert ( *init == T(2) ) ; optional<T> init2 ( init ) ; assert ( init2 == init ) ;
optional<T&>::optional( optional const& rhs );
optional
.
rhs
is initialized, *this
is initialized and its value is another reference to the same object
referenced by *rhs
;
else *this
is uninitialized.
rhs
is initialized, both *this
and *rhs
will refer to the same object
(they alias).
optional<T&> uninit ; assert (!uninit); optional<T&> uinit2 ( uninit ) ; assert ( uninit2 == uninit ); T v = 2 ; T& ref = v ; optional<T> init(ref); assert ( *init == v ) ; optional<T> init2 ( init ) ; assert ( *init2 == v ) ; v = 3 ; assert ( *init == 3 ) ; assert ( *init2 == 3 ) ;
optional<T
(not a ref)>::optional( optional&& rhs ) noexcept(
see below);
is_move_constructible<T>::value
is true
.
optional
.
rhs
is initialized, *this
is initialized and its value is move constructed from rhs
; else *this
is uninitialized.
T::T( T&& )
throws.
noexcept
is equivalent to is_nothrow_move_constructible<T>::value
.
rhs
is initialized, T::T( T &&
)
is called.
T::T( T&& );
in that case, rhs
remains
initialized and the value of *rhs
is determined by exception safety
of T::T(T&&)
.
optional<std::unique_ptr<T>> uninit ; assert (!uninit); optional<std::unique_ptr<T>> uinit2 ( std::move(uninit) ) ; assert ( uninit2 == uninit ); optional<std::unique_ptr<T>> init( std::uniqye_ptr<T>(new T(2)) ); assert ( **init == T(2) ) ; optional<std::unique_ptr<T>> init2 ( std::move(init) ) ; assert ( init ); assert ( *init == nullptr ); assert ( init2 ); assert ( **init2 == T(2) ) ;
optional<T&>::optional( optional && rhs );
optional
.
rhs
is initialized, *this
is initialized and its value is another reference to the same object
referenced by *rhs
;
else *this
is uninitialized.
rhs
is initialized, both *this
and *rhs
will refer to the same object
(they alias).
optional<std::unique_ptr<T>&> uninit ; assert (!uninit); optional<std::unique_ptr<T>&> uinit2 ( std::move(uninit) ) ; assert ( uninit2 == uninit ); std::unique_ptr<T> v(new T(2)) ; optional<std::unique_ptr<T>&> init(v); assert ( *init == v ) ; optional<std::unique_ptr<T>&> init2 ( std::move(init) ) ; assert ( *init2 == v ) ; *v = 3 ; assert ( **init == 3 ) ; assert ( **init2 == 3 ) ;
template<U> explicit optional<T
(not a ref)>::optional( optional<U> const& rhs );
optional
.
rhs
is initialized, *this
is initialized and its value is a copy of the
value of rhs converted to type T
;
else *this
is uninitialized.
T::T( U const&
)
throws.
T::T( U const&
)
is called if rhs
is initialized, which requires
a valid conversion from U
to T
.
T::T( U const&
);
in that case, this constructor
has no effect.
optional<double> x(123.4); assert ( *x == 123.4 ) ; optional<int> y(x) ; assert( *y == 123 ) ;
template<U> explicit optional<T
(not a ref)>::optional( optional<U>&& rhs );
optional
.
rhs
is initialized, *this
is initialized and its value is move-constructed from *rhs
;
else *this
is uninitialized.
T::T( U&& )
throws.
T::T( U&& )
is called if rhs
is
initialized, which requires a valid conversion from U
to T
.
T::T( U&& );
in that case, rhs
remains
initialized and the value of *rhs
is determined by exception safety
guarantee of T::T( U&&
)
.
optional<double> x(123.4); assert ( *x == 123.4 ) ; optional<int> y(std::move(x)) ; assert( *y == 123 ) ;
template<InPlaceFactory> explicit optional<T
(not a ref)>::optional( InPlaceFactory const& f );
template<TypedInPlaceFactory> explicit optional<T
(not a ref)>::optional( TypedInPlaceFactory const& f );
optional
with a value of T
obtained from the factory.
*this
is initialized
and its value is directly given from the factory
f
(i.e., the value
is not copied).
T
constructor called by the factory
throws.
T
constructor used by the factory; in that case, this constructor has
no effect.
class C { C ( char, double, std::string ) ; } ; C v('A',123.4,"hello"); optional<C> x( in_place ('A', 123.4, "hello") ); // InPlaceFactory used optional<C> y( in_place<C>('A', 123.4, "hello") ); // TypedInPlaceFactory used assert ( *x == v ) ; assert ( *y == v ) ;
optional& optional<T>::operator= ( none_t ) noexcept;
*this
is initialized destroys its contained
value.
*this
is uninitialized.
optional& optional<T
(not a ref)>::operator= ( T const& rhs ) ;
rhs
to an optional
.
*this
is initialized and its value is
a copy of rhs
.
T::operator=( T const&
)
or T::T(T const&)
throws.
*this
was initialized, T
's assignment operator is used,
otherwise, its copy-constructor is used.
*this
is unchanged and its value unspecified
as far as optional
is concerned (it is up to T
's
operator=()
).
If *this
is initially uninitialized and T
's
copy constructor fails, *this
is left properly uninitialized.
T x; optional<T> def ; optional<T> opt(x) ; T y; def = y ; assert ( *def == y ) ; opt = y ; assert ( *opt == y ) ;
optional<T&>& optional<T&>::operator= ( T& rhs ) ;
*this
is initialized and it references
the same object referenced by rhs
.
*this
was initialized, it is rebound
to the new object. See here
for details on this behavior.
int a = 1 ; int b = 2 ; T& ra = a ; T& rb = b ; optional<int&> def ; optional<int&> opt(ra) ; def = rb ; // binds 'def' to 'b' through 'rb' assert ( *def == b ) ; *def = a ; // changes the value of 'b' to a copy of the value of 'a' assert ( b == a ) ; int c = 3; int& rc = c ; opt = rc ; // REBINDS to 'c' through 'rc' c = 4 ; assert ( *opt == 4 ) ;
optional& optional<T
(not a ref)>::operator= ( T&& rhs ) ;
rhs
to an optional
.
*this
is initialized and its value is
moved from rhs
.
T::operator=( T&& )
or T::T(T &&)
throws.
*this
was initialized, T
's move-assignment operator is used,
otherwise, its move-constructor is used.
*this
is unchanged and its value unspecified
as far as optional
is concerned (it is up to T
's
operator=()
).
If *this
is initially uninitialized and T
's
move constructor fails, *this
is left properly uninitialized.
T x; optional<T> def ; optional<T> opt(x) ; T y1, y2, yR; def = std::move(y1) ; assert ( *def == yR ) ; opt = std::move(y2) ; assert ( *opt == yR ) ;
optional<T&>& optional<T&>::operator= ( T&& rhs ) = delete;
optional& optional<T
(not a ref)>::operator= ( optional const& rhs ) ;
T
is CopyConstructible
and CopyAssignable
.
Effects:
|
|
|
|
assigns |
initializes the contained value as if direct-initializing
an object of type |
|
destroys the contained value by calling |
no effect |
*this
;
bool(rhs) == bool(*this)
.
*this
and rhs
remains unchanged. If an exception is thrown during the call to T
's copy constructor, no effect.
If an exception is thrown during the call to T
's
copy assignment, the state of its contained value is as defined by
the exception safety guarantee of T
's
copy assignment.
T v; optional<T> opt(v); optional<T> def ; opt = def ; assert ( !def ) ; // previous value (copy of 'v') destroyed from within 'opt'.
optional<T&> & optional<T&>::operator= ( optional<T&> const& rhs ) ;
*rhs
is initialized, *this
is initialized and it references the same object referenced by *rhs
;
otherwise, *this
is uninitialized (and references no object).
*this
was initialized and so is *rhs
,
*this
is rebound to the new object. See here
for details on this behavior.
int a = 1 ; int b = 2 ; T& ra = a ; T& rb = b ; optional<int&> def ; optional<int&> ora(ra) ; optional<int&> orb(rb) ; def = orb ; // binds 'def' to 'b' through 'rb' wrapped within 'orb' assert ( *def == b ) ; *def = ora ; // changes the value of 'b' to a copy of the value of 'a' assert ( b == a ) ; int c = 3; int& rc = c ; optional<int&> orc(rc) ; ora = orc ; // REBINDS ora to 'c' through 'rc' c = 4 ; assert ( *ora == 4 ) ;
optional& optional<T
(not a ref)>::operator= ( optional&& rhs ) noexcept(
see below);
T
is MoveConstructible
and MoveAssignable
.
Effects:
|
|
|
|
assigns |
initializes the contained value as if direct-initializing
an object of type |
|
destroys the contained value by calling |
no effect |
*this
;
bool(rhs) == bool(*this)
.
noexcept
is equivalent to is_nothrow_move_constructible<T>::value &&
is_nothrow_move_assignable<T>::value
.
*this
and rhs
remains unchanged. If an exception is thrown during the call to T
's move constructor, the state of
*rhs
is determined by the exception safety guarantee of T
's
move constructor. If an exception is thrown during the call to T's
move-assignment, the state of **this
and *rhs
is determined by the exception
safety guarantee of T's move assignment.
optional<T> opt(T(2)) ; optional<T> def ; opt = def ; assert ( def ) ; assert ( opt ) ; assert ( *opt == T(2) ) ;
optional<T&> & optional<T&>::operator= ( optional<T&>&& rhs ) ;
optional<T&>::operator= ( optional<T&>
const&
rhs )
.
template<U> optional& optional<T
(not a ref)>::operator= ( optional<U> const& rhs ) ;
Effect:
|
|
|
|
assigns |
initializes the contained value as if direct-initializing
an object of type |
|
destroys the contained value by calling |
no effect |
*this
.
bool(rhs) == bool(*this)
.
bool(*this)
remains unchanged. If an exception
is thrown during the call to T
's
constructor, no effect. If an exception is thrown during the call to
T
's assignment, the
state of its contained value is as defined by the exception safety
guarantee of T
's copy
assignment.
T v; optional<T> opt0(v); optional<U> opt1; opt1 = opt0 ; assert ( *opt1 == static_cast<U>(v) ) ;
template<U> optional& optional<T
(not a ref)>::operator= ( optional<U>&& rhs ) ;
Effect:
|
|
|
|
assigns |
initializes the contained value as if direct-initializing
an object of type |
|
destroys the contained value by calling |
no effect |
*this
.
bool(rhs) == bool(*this)
.
bool(*this)
remains unchanged. If an exception
is thrown during the call to T
's
constructor, no effect. If an exception is thrown during the call to
T
's assignment, the
state of its contained value is as defined by the exception safety
guarantee of T
's copy
assignment.
T v; optional<T> opt0(v); optional<U> opt1; opt1 = std::move(opt0) ; assert ( opt0 ); assert ( opt1 ) assert ( *opt1 == static_cast<U>(v) ) ;
template<class... Args> void optional<T
(not a ref)>::emplace( Args...&& args );
*this
is initialized calls *this = none
.
Then initializes in-place the contained value as if direct-initializing
an object of type T
with std::forward<Args>(args)...
.
*this
is initialized.
T
's constructor throws.
T
,
*this
is uninitialized.
T
need not be MoveConstructible
or MoveAssignable
.
On compilers that do not support variadic templates, the signature
falls back to two overloads:template<class
Arg>
void emplace(Arg&& arg)
and void
emplace()
.
On compilers that do not support rvalue references, the signature falls
back to three overloads: taking const
and non-const
lvalue reference,
and third with empty function argument list.
T v; optional<const T> opt; opt.emplace(0); // create in-place using ctor T(int) opt.emplace(); // destroy previous and default-construct another T opt.emplace(v); // destroy and copy-construct in-place (no assignment called)
template<InPlaceFactory> optional<T>& optional<T
(not a ref)>::operator=( InPlaceFactory const& f );
template<TypedInPlaceFactory> optional<T>& optional<T
(not a ref)>::operator=( TypedInPlaceFactory const& f );
optional
with a value of T
obtained
from the factory.
*this
is initialized
and its value is directly given from the factory
f
(i.e., the value
is not copied).
T
constructor called by the factory
throws.
T
constructor used by the factory; in that case, the optional
object will be reset to be uninitialized.
void optional<T
(not a ref)>::reset( T const& v ) ;
operator=
( T
const&
v)
;
void optional<T>::reset() noexcept ;
operator=(
none_t );
T const& optional<T
(not a ref)>::get() const ;
T& optional<T
(not a ref)>::get() ;
inline T const& get ( optional<T
(not a ref)> const& ) ;
inline T& get ( optional<T
(not a ref)> &) ;
*this
is initialized
BOOST_ASSERT()
.
T const& optional<T&>::get() const ;
T& optional<T&>::get() ;
inline T const& get ( optional<T&> const& ) ;
inline T& get ( optional<T&> &) ;
*this
is initialized
BOOST_ASSERT()
.
T const& optional<T
(not a ref)>::operator*() const& ;
T& optional<T
(not a ref)>::operator*() &;
*this
is initialized
BOOST_ASSERT()
.
On compilers that do not support ref-qualifiers on member functions
these two overloads are replaced with the classical two: a const
and non-const
member functions.
T v ; optional<T> opt ( v ); T const& u = *opt; assert ( u == v ) ; T w ; *opt = w ; assert ( *opt == w ) ;
T&& optional<T
(not a ref)>::operator*() &&;
*this
contains a value.
return std::move(*val);
.
BOOST_ASSERT()
.
On compilers that do not support ref-qualifiers on member functions
this overload is not present.
T & optional<T&>::operator*() const& ;
T & optional<T&>::operator*() & ;
T & optional<T&>::operator*() && ;
*this
is initialized
BOOST_ASSERT()
.
On compilers that do not support ref-qualifiers on member functions
these three overloads are replaced with the classical two: a const
and non-const
member functions.
T v ; T& vref = v ; optional<T&> opt ( vref ); T const& vref2 = *opt; assert ( vref2 == v ) ; ++ v ; assert ( *opt == v ) ;
T const& optional<T>::value() const& ;
T& optional<T>::value() & ;
return bool(*this) ? *val : throw bad_optional_access();
.
const
and non-const
member functions.
T v ; optional<T> o0, o1 ( v ); assert ( o1.value() == v ); try { o0.value(); // throws assert ( false ); } catch(bad_optional_access&) { assert ( true ); }
T&& optional<T>::value() && ;
return bool(*this) ? std::move(*val) : throw bad_optional_access();
.
template<class U> T optional<T>::value_or(U && v) const& ;
if (*this) return **this; else return
std::forward<U>(v);
.
T
is not CopyConstructible
or U &&
is not convertible to T
,
the program is ill-formed.
const
-qualified member
function. On compilers without rvalue reference support the type of
v
becomes U const&
.
template<class U> T optional<T>::value_or(U && v) && ;
if (*this) return std::move(**this); else return std::forward<U>(v);
.
T
is not MoveConstructible
or U &&
is not convertible to T
,
the program is ill-formed.
template<class F> T optional<T>::value_or_eval(F f) const& ;
T
is CopyConstructible
and F
models a Generator
whose result type
is convertible to T
.
if
(*this) return **this; else return f();
.
const
-qualified member
function.
int complain_and_0() { clog << "no value returned, using default" << endl; return 0; } optional<int> o1 = 1; optional<int> oN = none; int i = o1.value_or_eval(complain_and_0); // fun not called assert (i == 1); int j = oN.value_or_eval(complain_and_0); // fun called assert (i == 0);
template<class F> T optional<T>::value_or_eval(F f) && ;
T
is MoveConstructible
and F
models a Generator
whose result type is convertible to T
.
if
(*this) return std::move(**this); else return
f();
.
T const& optional<T
(not a ref)>::get_value_or( T const& default) const ;
T& optional<T
(not a ref)>::get_value_or( T& default ) ;
inline T const& get_optional_value_or ( optional<T
(not a ref)> const& o, T const& default ) ;
inline T& get_optional_value_or ( optional<T
(not a ref)>& o, T& default ) ;
value_or()
instead.
default
.
T v, z ; optional<T> def; T const& y = def.get_value_or(z); assert ( y == z ) ; optional<T> opt ( v ); T const& u = get_optional_value_or(opt,z); assert ( u == v ) ; assert ( u != z ) ;
T const* optional<T
(not a ref)>::get_ptr() const ;
T* optional<T
(not a ref)>::get_ptr() ;
inline T const* get_pointer ( optional<T
(not a ref)> const& ) ;
inline T* get_pointer ( optional<T
(not a ref)> &) ;
*this
is initialized, a pointer to the
contained value; else 0
(null).
*this
,
so you should not hold nor delete this pointer
T v; optional<T> opt(v); optional<T> const copt(v); T* p = opt.get_ptr() ; T const* cp = copt.get_ptr(); assert ( p == get_pointer(opt) ); assert ( cp == get_pointer(copt) ) ;
T const* optional<T
(not a ref)>::operator ->() const ;
T* optional<T
(not a ref)>::operator ->() ;
*this
is initialized.
BOOST_ASSERT()
.
struct X { int mdata ; } ; X x ; optional<X> opt (x); opt->mdata = 2 ;
explicit optional<T>::operator bool() const noexcept ;
get_ptr() != 0
.
optional<T> def ; assert ( def == 0 ); optional<T> opt ( v ) ; assert ( opt ); assert ( opt != 0 );
bool optional<T>::operator!() noexcept ;
*this
is uninitialized, true
; else false
.
optional<T> opt ; assert ( !opt ); *opt = some_T ; // Notice the "double-bang" idiom here. assert ( !!opt ) ;
bool optional<T>::is_initialized() const ;
explicit operator
bool ()
;
optional<T
(not a ref)> make_optional( T const& v )
optional<T>(v)
for the deduced
type T
of v
.
template<class T> void foo ( optional<T> const& opt ) ; foo ( make_optional(1+1) ) ; // Creates an optional<int>
optional<T
(not a ref)> make_optional( bool condition, T const& v )
optional<T>(condition,v)
for the deduced
type T
of v
.
optional<double> calculate_foo() { double val = compute_foo(); return make_optional(is_not_nan_and_finite(val),val); } optional<double> v = calculate_foo(); if ( !v ) error("foo wasn't computed");
bool operator == ( optional<T> const& x, optional<T> const& y );
T
shall meet requirements of EqualityComparable
.
x
and y
are initialized,
(*x
== *y)
.
If only x
or y
is initialized, false
.
If both are uninitialized, true
.
optional<T>
not containing a value is compared unequal to any optional<T>
containing any value, and equal
to any other optional<T>
not containing a value. Pointers
have shallow relational operators while optional
has deep relational operators. Do not use operator==
directly in generic code which expect
to be given either an optional<T>
or a pointer; use equal_pointees()
instead
optional<T> oN, oN_; optional<T> o1(T(1)), o1_(T(1)); optional<T> o2(T(2)); assert ( oN == oN ); // Identity implies equality assert ( o1 == o1 ); // assert ( oN == oN_ ); // Both uninitialized compare equal assert ( oN != o1 ); // Initialized unequal to initialized. assert ( o1 == o1_ ); // Both initialized compare as (*lhs == *rhs) assert ( o1 != o2 ); //
bool operator < ( optional<T> const& x, optional<T> const& y );
*x < *y
shall be well-formed and its result
shall be convertible to bool
.
(!y) ? false : (!x) ? true : *x <
*y
.
optional<T>
not containing a value is ordered as less than any optional<T>
containing any value, and equivalent
to any other optional<T>
not containing a value. Pointers
have shallow relational operators while optional
has deep relational operators. Do not use operator<
directly in generic code which
expect to be given either an optional<T>
or a pointer; use less_pointees()
instead. T
need not
be LessThanComparable
. Only
single operator<
is required. Other relational operations are defined in terms of this
one. If T
's operator<
satisfies the axioms of LessThanComparable
(transitivity,
antisymmetry and irreflexivity), optinal<T>
is LessThanComparable
.
optional<T> oN, oN_; optional<T> o0(T(0)); optional<T> o1(T(1)); assert ( !(oN < oN) ); // Identity implies equivalence assert ( !(o1 < o1) ); assert ( !(oN < oN_) ); // Two uninitialized are equivalent assert ( !(oN_ < oN) ); assert ( oN < o0 ); // Uninitialized is less than initialized assert ( !(o0 < oN) ); assert ( o1 < o2 ) ; // Two initialized compare as (*lhs < *rhs) assert ( !(o2 < o1) ) ; assert ( !(o2 < o2) ) ;
bool operator != ( optional<T> const& x, optional<T> const& y );
!(
x ==
y );
bool operator > ( optional<T> const& x, optional<T> const& y );
(
y <
x );
bool operator <= ( optional<T> const& x, optional<T> const& y );
!(
y <
x );
bool operator >= ( optional<T> const& x, optional<T> const& y );
!(
x <
y );
bool operator == ( optional<T> const& x, none_t ) noexcept;
bool operator == ( none_t, optional<T> const& x ) noexcept;
!x
.
T
need not meet requirements of EqualityComparable
.
bool operator != ( optional<T> const& x, none_t ) noexcept;
bool operator != ( none_t, optional<T> const& x ) noexcept;
!(
x ==
y );
void swap ( optional<T>& x, optional<T>& y ) ;
T
shall be swappable and T
shall be MoveConstructible
.
Effects:
|
|
|
|
calls |
initializes the contained value of |
|
initializes the contained value of |
no effect |
x
and y
interchanged.
swap(T&,T&)
throws. If only one is initialized, whatever T::T ( T&& )
throws.
T x(12); T y(21); optional<T> def0 ; optional<T> def1 ; optional<T> optX(x); optional<T> optY(y); boost::swap(def0,def1); // no-op boost::swap(def0,optX); assert ( *def0 == x ); assert ( !optX ); boost::swap(def0,optX); // Get back to original values boost::swap(optX,optY); assert ( *optX == y ); assert ( *optY == x );
void swap ( optional<T&>& x, optional<T&>& y ) noexcept ;
x
refers to what y
refererred
to before the swap (if anything). y
refers to whatever x
referred to before the swap.
T x(12); T y(21); optional<T&> opt0; optional<T&> optX (x); optional<T&> optY (y); boost::swap(optX, optY); assert (addressof(*optX) == addressof(y)); assert (addressof(*optY) == addressof(x)); boost::swap(opt0, optX); assert ( opt0 ); assert ( !optX ); assert (addressof(*opt0) == addressof(y));[endsect]