Boost GIL


utilities.hpp
Go to the documentation of this file.
1 /*
2  Copyright 2005-2007 Adobe Systems Incorporated
3 
4  Use, modification and distribution are subject to the Boost Software License,
5  Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
6  http://www.boost.org/LICENSE_1_0.txt).
7 
8  See http://opensource.adobe.com/gil for most recent version including documentation.
9 */
10 
11 /*************************************************************************************************/
12 
13 #ifndef GIL_UTILITIES_H
14 #define GIL_UTILITIES_H
15 
16 #include "gil_config.hpp"
17 #include <functional>
18 #include <boost/config/no_tr1/cmath.hpp>
19 #include <cstddef>
20 #include <algorithm>
21 #include <utility>
22 #include <iterator>
23 #include <boost/static_assert.hpp>
24 #include <boost/type_traits.hpp>
25 #include <boost/mpl/size.hpp>
26 #include <boost/mpl/distance.hpp>
27 #include <boost/mpl/begin.hpp>
28 #include <boost/mpl/find.hpp>
29 #include <boost/mpl/range_c.hpp>
30 #include <boost/iterator/iterator_adaptor.hpp>
31 #include <boost/iterator/iterator_facade.hpp>
32 
42 
43 namespace boost { namespace gil {
44 
57 // CLASS point2
65 
66 template <typename T>
67 class point2 {
68 public:
69  typedef T value_type;
70  template <std::size_t D> struct axis { typedef value_type coord_t; };
71  static const std::size_t num_dimensions=2;
72 
73  point2() : x(0), y(0) {}
74  point2(T newX, T newY) : x(newX), y(newY) {}
75  point2(const point2& p) : x(p.x), y(p.y) {}
76  ~point2() {}
77 
78  point2& operator=(const point2& p) { x=p.x; y=p.y; return *this; }
79 
80  point2 operator<<(std::ptrdiff_t shift) const { return point2(x<<shift,y<<shift); }
81  point2 operator>>(std::ptrdiff_t shift) const { return point2(x>>shift,y>>shift); }
82  point2& operator+=(const point2& p) { x+=p.x; y+=p.y; return *this; }
83  point2& operator-=(const point2& p) { x-=p.x; y-=p.y; return *this; }
84  point2& operator/=(double t) { if (t<0 || 0<t) { x/=t; y/=t; } return *this; }
85 
86  const T& operator[](std::size_t i) const { return this->*mem_array[i]; }
87  T& operator[](std::size_t i) { return this->*mem_array[i]; }
88 
89  T x,y;
90 private:
91  // this static array of pointers to member variables makes operator[] safe and doesn't seem to exhibit any performance penalty
92  static T point2<T>::* const mem_array[num_dimensions];
93 };
94 
95 template <typename T>
96 T point2<T>::* const point2<T>::mem_array[point2<T>::num_dimensions] = { &point2<T>::x, &point2<T>::y };
97 
99 template <typename T> BOOST_FORCEINLINE
100 bool operator==(const point2<T>& p1, const point2<T>& p2) { return (p1.x==p2.x && p1.y==p2.y); }
102 template <typename T> BOOST_FORCEINLINE
103 bool operator!=(const point2<T>& p1, const point2<T>& p2) { return p1.x!=p2.x || p1.y!=p2.y; }
105 template <typename T> BOOST_FORCEINLINE
106 point2<T> operator+(const point2<T>& p1, const point2<T>& p2) { return point2<T>(p1.x+p2.x,p1.y+p2.y); }
108 template <typename T> BOOST_FORCEINLINE
109 point2<T> operator-(const point2<T>& p) { return point2<T>(-p.x,-p.y); }
111 template <typename T> BOOST_FORCEINLINE
112 point2<T> operator-(const point2<T>& p1, const point2<T>& p2) { return point2<T>(p1.x-p2.x,p1.y-p2.y); }
114 template <typename T> BOOST_FORCEINLINE
115 point2<double> operator/(const point2<T>& p, double t) { return (t<0 || 0<t) ? point2<double>(p.x/t,p.y/t) : point2<double>(0,0); }
117 template <typename T> BOOST_FORCEINLINE
118 point2<T> operator*(const point2<T>& p, std::ptrdiff_t t) { return point2<T>(p.x*t,p.y*t); }
120 template <typename T> BOOST_FORCEINLINE
121 point2<T> operator*(std::ptrdiff_t t, const point2<T>& p) { return point2<T>(p.x*t,p.y*t); }
122 
124 template <std::size_t K, typename T> BOOST_FORCEINLINE
125 const T& axis_value(const point2<T>& p) { return p[K]; }
126 
128 template <std::size_t K, typename T> BOOST_FORCEINLINE
129  T& axis_value( point2<T>& p) { return p[K]; }
130 
136 
137 inline std::ptrdiff_t iround(float x ) { return static_cast<std::ptrdiff_t>(x + (x < 0.0f ? -0.5f : 0.5f)); }
138 inline std::ptrdiff_t iround(double x) { return static_cast<std::ptrdiff_t>(x + (x < 0.0 ? -0.5 : 0.5)); }
139 inline std::ptrdiff_t ifloor(float x ) { return static_cast<std::ptrdiff_t>(std::floor(x)); }
140 inline std::ptrdiff_t ifloor(double x) { return static_cast<std::ptrdiff_t>(std::floor(x)); }
141 inline std::ptrdiff_t iceil(float x ) { return static_cast<std::ptrdiff_t>(std::ceil(x)); }
142 inline std::ptrdiff_t iceil(double x) { return static_cast<std::ptrdiff_t>(std::ceil(x)); }
143 
153 inline point2<std::ptrdiff_t> iround(const point2<float >& p) { return point2<std::ptrdiff_t>(iround(p.x),iround(p.y)); }
156 inline point2<std::ptrdiff_t> iround(const point2<double>& p) { return point2<std::ptrdiff_t>(iround(p.x),iround(p.y)); }
158 inline point2<std::ptrdiff_t> ifloor(const point2<float >& p) { return point2<std::ptrdiff_t>(ifloor(p.x),ifloor(p.y)); }
160 inline point2<std::ptrdiff_t> ifloor(const point2<double>& p) { return point2<std::ptrdiff_t>(ifloor(p.x),ifloor(p.y)); }
162 inline point2<std::ptrdiff_t> iceil (const point2<float >& p) { return point2<std::ptrdiff_t>(iceil(p.x), iceil(p.y)); }
164 inline point2<std::ptrdiff_t> iceil (const point2<double>& p) { return point2<std::ptrdiff_t>(iceil(p.x), iceil(p.y)); }
165 
171 
172 template <typename T>
173 inline T align(T val, std::size_t alignment) {
174  return val+(alignment - val%alignment)%alignment;
175 }
176 
180 template <typename ConstT, typename Value, typename Reference, typename ConstReference,
181  typename ArgType, typename ResultType, bool IsMutable>
182 struct deref_base {
183  typedef ArgType argument_type;
184  typedef ResultType result_type;
185  typedef ConstT const_t;
186  typedef Value value_type;
187  typedef Reference reference;
188  typedef ConstReference const_reference;
189  BOOST_STATIC_CONSTANT(bool, is_mutable = IsMutable);
190 };
191 
195 template <typename D1, typename D2>
196 class deref_compose : public deref_base<
197  deref_compose<typename D1::const_t, typename D2::const_t>,
198  typename D1::value_type, typename D1::reference, typename D1::const_reference,
199  typename D2::argument_type, typename D1::result_type, D1::is_mutable && D2::is_mutable>
200 {
201 public:
202  D1 _fn1;
203  D2 _fn2;
204 
205  typedef typename D2::argument_type argument_type;
206  typedef typename D1::result_type result_type;
207 
208  deref_compose() {}
209  deref_compose(const D1& x, const D2& y) : _fn1(x), _fn2(y) {}
210  deref_compose(const deref_compose& dc) : _fn1(dc._fn1), _fn2(dc._fn2) {}
211  template <typename _D1, typename _D2> deref_compose(const deref_compose<_D1,_D2>& dc) : _fn1(dc._fn1), _fn2(dc._fn2) {}
212 
213  result_type operator()(argument_type x) const { return _fn1(_fn2(x)); }
214  result_type operator()(argument_type x) { return _fn1(_fn2(x)); }
215 };
216 
217 // reinterpret_cast is implementation-defined. Static cast is not.
218 template <typename OutPtr, typename In> BOOST_FORCEINLINE
219  OutPtr gil_reinterpret_cast( In* p) { return static_cast<OutPtr>(static_cast<void*>(p)); }
220 
221 template <typename OutPtr, typename In> BOOST_FORCEINLINE
222 const OutPtr gil_reinterpret_cast_c(const In* p) { return static_cast<const OutPtr>(static_cast<const void*>(p)); }
223 
224 namespace detail {
225 
231 
232 template <class InputIter, class Size, class OutputIter>
233 std::pair<InputIter, OutputIter> _copy_n(InputIter first, Size count,
234  OutputIter result,
235  std::input_iterator_tag) {
236  for ( ; count > 0; --count) {
237  *result = *first;
238  ++first;
239  ++result;
240  }
241  return std::pair<InputIter, OutputIter>(first, result);
242 }
243 
244 template <class RAIter, class Size, class OutputIter>
245 inline std::pair<RAIter, OutputIter>
246 _copy_n(RAIter first, Size count, OutputIter result, std::random_access_iterator_tag) {
247  RAIter last = first + count;
248  return std::pair<RAIter, OutputIter>(last, std::copy(first, last, result));
249 }
250 
251 template <class InputIter, class Size, class OutputIter>
252 inline std::pair<InputIter, OutputIter>
253 _copy_n(InputIter first, Size count, OutputIter result) {
254  return _copy_n(first, count, result, typename std::iterator_traits<InputIter>::iterator_category());
255 }
256 
257 template <class InputIter, class Size, class OutputIter>
258 inline std::pair<InputIter, OutputIter>
259 copy_n(InputIter first, Size count, OutputIter result) {
260  return detail::_copy_n(first, count, result);
261 }
262 
264 template <typename T>
265 struct identity {
266  typedef T argument_type;
267  typedef T result_type;
268  const T& operator()(const T& val) const { return val; }
269 };
270 
271 /*************************************************************************************************/
272 
274 template <typename T1, typename T2>
276  typedef T1 first_argument_type;
277  typedef T2 second_argument_type;
278  typedef T1 result_type;
279  T1 operator()(T1 f1, T2 f2) const {
280  return f1+f2;
281  }
282 };
283 
284 /*************************************************************************************************/
285 
287 template <typename T>
288 struct inc {
289  typedef T argument_type;
290  typedef T result_type;
291  T operator()(T x) const { return ++x; }
292 };
293 
294 /*************************************************************************************************/
295 
297 template <typename T>
298 struct dec {
299  typedef T argument_type;
300  typedef T result_type;
301  T operator()(T x) const { return --x; }
302 };
303 
305 // a given MPL RandomAccessSequence (or size if the type is not present)
306 template <typename Types, typename T>
308  : public mpl::distance<typename mpl::begin<Types>::type,
309  typename mpl::find<Types,T>::type>::type {};
310 } // namespace detail
311 
312 
313 
316 template <typename ColorSpace, typename ChannelMapping = mpl::range_c<int,0,mpl::size<ColorSpace>::value> >
317 struct layout {
318  typedef ColorSpace color_space_t;
319  typedef ChannelMapping channel_mapping_t;
320 };
321 
323 template <typename Value, typename T1, typename T2> // where value_type<T1> == value_type<T2> == Value
324 void swap_proxy(T1& left, T2& right) {
325  Value tmp = left;
326  left = right;
327  right = tmp;
328 }
329 
331 inline bool little_endian() {
332  short tester = 0x0001;
333  return *(char*)&tester!=0;
334 }
336 inline bool big_endian() {
337  return !little_endian();
338 }
339 
340 } } // namespace boost::gil
341 
342 #endif
plus function object whose arguments may be of different type.
Definition: utilities.hpp:275
BOOST_FORCEINLINE boost::gil::pixel< T, Cs > * copy(boost::gil::pixel< T, Cs > *first, boost::gil::pixel< T, Cs > *last, boost::gil::pixel< T, Cs > *dst)
Copy when both src and dst are interleaved and of the same type can be just memmove.
Definition: algorithm.hpp:151
Helper base class for pixel dereference adaptors.
Definition: utilities.hpp:182
operator– wrapped in a function object
Definition: utilities.hpp:298
identity taken from SGI STL.
Definition: utilities.hpp:265
operator++ wrapped in a function object
Definition: utilities.hpp:288
Represents a color space and ordering of channels in memory.
Definition: utilities.hpp:317
Composes two dereference function objects. Similar to std::unary_compose but needs to pull some typed...
Definition: utilities.hpp:196
GIL configuration file.
Returns the index corresponding to the first occurrance of a given given type in. ...
Definition: utilities.hpp:307