...one of the most highly
regarded and expertly designed C++ library projects in the
world.
— Herb Sutter and Andrei
Alexandrescu, C++
Coding Standards
CUDA (Compute Unified Device Architecture) is a platform for parallel computing on NVIDIA GPUs. The application programming interface of CUDA gives access to GPU's instruction set and computation resources (Execution of compute kernels).
CUDA operation such as compute kernels or memory transfer (between host and device) can be grouped/queued by CUDA streams. are executed on the GPUs. Boost.Fiber enables a fiber to sleep (suspend) till a CUDA stream has completed its operations. This enables applications to run other fibers on the CPU without the need to spawn an additional OS-threads. And resume the fiber when the CUDA streams has finished.
__global__ void kernel( int size, int * a, int * b, int * c) { int idx = threadIdx.x + blockIdx.x * blockDim.x; if ( idx < size) { int idx1 = (idx + 1) % 256; int idx2 = (idx + 2) % 256; float as = (a[idx] + a[idx1] + a[idx2]) / 3.0f; float bs = (b[idx] + b[idx1] + b[idx2]) / 3.0f; c[idx] = (as + bs) / 2; } } boost::fibers::fiber f([&done]{ cudaStream_t stream; cudaStreamCreate( & stream); int size = 1024 * 1024; int full_size = 20 * size; int * host_a, * host_b, * host_c; cudaHostAlloc( & host_a, full_size * sizeof( int), cudaHostAllocDefault); cudaHostAlloc( & host_b, full_size * sizeof( int), cudaHostAllocDefault); cudaHostAlloc( & host_c, full_size * sizeof( int), cudaHostAllocDefault); int * dev_a, * dev_b, * dev_c; cudaMalloc( & dev_a, size * sizeof( int) ); cudaMalloc( & dev_b, size * sizeof( int) ); cudaMalloc( & dev_c, size * sizeof( int) ); std::minstd_rand generator; std::uniform_int_distribution<> distribution(1, 6); for ( int i = 0; i < full_size; ++i) { host_a[i] = distribution( generator); host_b[i] = distribution( generator); } for ( int i = 0; i < full_size; i += size) { cudaMemcpyAsync( dev_a, host_a + i, size * sizeof( int), cudaMemcpyHostToDevice, stream); cudaMemcpyAsync( dev_b, host_b + i, size * sizeof( int), cudaMemcpyHostToDevice, stream); kernel<<< size / 256, 256, 0, stream >>>( size, dev_a, dev_b, dev_c); cudaMemcpyAsync( host_c + i, dev_c, size * sizeof( int), cudaMemcpyDeviceToHost, stream); } auto result = boost::fibers::cuda::waitfor_all( stream); // suspend fiber till CUDA stream has finished BOOST_ASSERT( stream == std::get< 0 >( result) ); BOOST_ASSERT( cudaSuccess == std::get< 1 >( result) ); std::cout << "f1: GPU computation finished" << std::endl; cudaFreeHost( host_a); cudaFreeHost( host_b); cudaFreeHost( host_c); cudaFree( dev_a); cudaFree( dev_b); cudaFree( dev_c); cudaStreamDestroy( stream); }); f.join();
#include <boost/fiber/cuda/waitfor.hpp> namespace boost { namespace fibers { namespace cuda { std::tuple< cudaStream_t, cudaError_t > waitfor_all( cudaStream_t st); std::vector< std::tuple< cudaStream_t, cudaError_t > > waitfor_all( cudaStream_t ... st); }}}
cuda::waitfor()
#include <boost/fiber/cuda/waitfor.hpp> namespace boost { namespace fibers { namespace cuda { std::tuple< cudaStream_t, cudaError_t > waitfor_all( cudaStream_t st); std::vector< std::tuple< cudaStream_t, cudaError_t > > waitfor_all( cudaStream_t ... st); }}}
Suspends active fiber till CUDA stream has finished its operations.
tuple of stream reference and the CUDA stream status