boost/fiber/detail/spinlock_ttas_adaptive_futex.hpp
// Copyright Oliver Kowalke 2016.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_FIBERS_SPINLOCK_TTAS_ADAPTIVE_FUTEX_H
#define BOOST_FIBERS_SPINLOCK_TTAS_ADAPTIVE_FUTEX_H
#include <algorithm>
#include <atomic>
#include <cmath>
#include <random>
#include <thread>
#include <boost/fiber/detail/config.hpp>
#include <boost/fiber/detail/cpu_relax.hpp>
#include <boost/fiber/detail/futex.hpp>
// based on informations from:
// https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
// https://software.intel.com/en-us/articles/long-duration-spin-wait-loops-on-hyper-threading-technology-enabled-intel-processors
namespace boost {
namespace fibers {
namespace detail {
class spinlock_ttas_adaptive_futex {
private:
template< typename FBSplk >
friend class spinlock_rtm;
std::atomic< std::int32_t > value_{ 0 };
std::atomic< std::int32_t > retries_{ 0 };
public:
spinlock_ttas_adaptive_futex() = default;
spinlock_ttas_adaptive_futex( spinlock_ttas_adaptive_futex const&) = delete;
spinlock_ttas_adaptive_futex & operator=( spinlock_ttas_adaptive_futex const&) = delete;
void lock() noexcept {
static thread_local std::minstd_rand generator{ std::random_device{}() };
std::int32_t collisions = 0, retries = 0, expected = 0;
const std::int32_t prev_retries = retries_.load( std::memory_order_relaxed);
const std::int32_t max_relax_retries = (std::min)(
static_cast< std::int32_t >( BOOST_FIBERS_SPIN_BEFORE_SLEEP0), 2 * prev_retries + 10);
const std::int32_t max_sleep_retries = (std::min)(
static_cast< std::int32_t >( BOOST_FIBERS_SPIN_BEFORE_YIELD), 2 * prev_retries + 10);
// after max. spins or collisions suspend via futex
while ( retries++ < BOOST_FIBERS_RETRY_THRESHOLD) {
// avoid using multiple pause instructions for a delay of a specific cycle count
// the delay of cpu_relax() (pause on Intel) depends on the processor family
// the cycle count can not guaranteed from one system to the next
// -> check the shared variable 'value_' in between each cpu_relax() to prevent
// unnecessarily long delays on some systems
// test shared variable 'status_'
// first access to 'value_' -> chache miss
// sucessive acccess to 'value_' -> cache hit
// if 'value_' was released by other fiber
// cached 'value_' is invalidated -> cache miss
if ( 0 != ( expected = value_.load( std::memory_order_relaxed) ) ) {
#if !defined(BOOST_FIBERS_SPIN_SINGLE_CORE)
if ( max_relax_retries > retries) {
// give CPU a hint that this thread is in a "spin-wait" loop
// delays the next instruction's execution for a finite period of time (depends on processor family)
// the CPU is not under demand, parts of the pipeline are no longer being used
// -> reduces the power consumed by the CPU
// -> prevent pipeline stalls
cpu_relax();
} else if ( max_sleep_retries > retries) {
// std::this_thread::sleep_for( 0us) has a fairly long instruction path length,
// combined with an expensive ring3 to ring 0 transition costing about 1000 cycles
// std::this_thread::sleep_for( 0us) lets give up this_thread the remaining part of its time slice
// if and only if a thread of equal or greater priority is ready to run
static constexpr std::chrono::microseconds us0{ 0 };
std::this_thread::sleep_for( us0);
} else {
// std::this_thread::yield() allows this_thread to give up the remaining part of its time slice,
// but only to another thread on the same processor
// instead of constant checking, a thread only checks if no other useful work is pending
std::this_thread::yield();
}
#else
// std::this_thread::yield() allows this_thread to give up the remaining part of its time slice,
// but only to another thread on the same processor
// instead of constant checking, a thread only checks if no other useful work is pending
std::this_thread::yield();
#endif
} else if ( ! value_.compare_exchange_strong( expected, 1, std::memory_order_acquire) ) {
// spinlock now contended
// utilize 'Binary Exponential Backoff' algorithm
// linear_congruential_engine is a random number engine based on Linear congruential generator (LCG)
std::uniform_int_distribution< std::int32_t > distribution{
0, static_cast< std::int32_t >( 1) << (std::min)(collisions, static_cast< std::int32_t >( BOOST_FIBERS_CONTENTION_WINDOW_THRESHOLD)) };
const std::int32_t z = distribution( generator);
++collisions;
for ( std::int32_t i = 0; i < z; ++i) {
// -> reduces the power consumed by the CPU
// -> prevent pipeline stalls
cpu_relax();
}
} else {
// success, lock acquired
retries_.store( prev_retries + (retries - prev_retries) / 8, std::memory_order_relaxed);
return;
}
}
// failure, lock not acquired
// pause via futex
if ( 2 != expected) {
expected = value_.exchange( 2, std::memory_order_acquire);
}
while ( 0 != expected) {
futex_wait( & value_, 2);
expected = value_.exchange( 2, std::memory_order_acquire);
}
// success, lock acquired
retries_.store( prev_retries + (retries - prev_retries) / 8, std::memory_order_relaxed);
}
bool try_lock() noexcept {
std::int32_t expected = 0;
return value_.compare_exchange_strong( expected, 1, std::memory_order_acquire);
}
void unlock() noexcept {
if ( 1 != value_.fetch_sub( 1, std::memory_order_acquire) ) {
value_.store( 0, std::memory_order_release);
futex_wake( & value_);
}
}
};
}}}
#endif // BOOST_FIBERS_SPINLOCK_TTAS_ADAPTIVE_FUTEX_H