...one of the most highly
regarded and expertly designed C++ library projects in the
world.
— Herb Sutter and Andrei
Alexandrescu, C++
Coding Standards
Boost.MultiArray defines an array class,
multi_array
, and two adapter classes,
multi_array_ref
and
const_multi_array_ref
. The three classes model
MultiArray and so they share a lot of functionality.
multi_array_ref
differs from
multi_array
in that the
multi_array
manages its own memory, while
multi_array_ref
is passed a block of memory that it
expects to be externally managed.
const_multi_array_ref
differs from
multi_array_ref
in that the underlying elements it
adapts cannot be modified through its interface, though some array
properties, including the array shape and index bases, can be altered.
Functionality the classes have in common is described
below.
Note: Preconditions, Effects, and Implementation. Throughout the following sections, small pieces of C++ code are used to specify constraints such as preconditions, effects, and postconditions. These do not necessarily describe the underlying implementation of array components; rather, they describe the expected input to and behavior of the specified operations. Failure to meet preconditions results in undefined behavior. Not all effects (i.e. copy constructors, etc.) must be mimicked exactly. The code snippets for effects intend to capture the essence of the described operation.
Queries.
element* data(); const element* data() const;
This returns a pointer to the beginning of the
contiguous block that contains the array's data. If all dimensions of
the array are 0-indexed and stored in ascending order, this is
equivalent to origin()
. Note that
const_multi_array_ref
only provides the const
version of this function.
element* origin(); const element* origin() const;
This returns the origin element of the
multi_array
. Note that
const_multi_array_ref
only provides the const
version of this function. (Required by MultiArray)
const index* index_bases();
This returns the index bases for the
multi_array
. (Required by MultiArray)
const index* strides();
This returns the strides for the
multi_array
. (Required by MultiArray)
const size_type* shape();
This returns the shape of the
multi_array
. (Required by MultiArray)
Comparators.
bool operator==(const *array-type*& rhs); bool operator!=(const *array-type*& rhs); bool operator<(const *array-type*& rhs); bool operator>(const *array-type*& rhs); bool operator>=(const *array-type*& rhs); bool operator<=(const *array-type*& rhs);
Each comparator executes a lexicographical compare over the value types of the two arrays. (Required by MultiArray)
Preconditions. element
must support the
comparator corresponding to that called on
multi_array
.
Complexity. O(num_elements()
).
Modifiers.
template <typename SizeList> void reshape(const SizeList& sizes)
This changes the shape of the multi_array
. The
number of elements and the index bases remain the same, but the number
of values at each level of the nested container hierarchy may
change.
SizeList
Requirements. SizeList
must model
Collection.
Preconditions.
std::accumulate(sizes.begin(),sizes.end(),size_type(1),std::times<size_type>()) == this->num_elements(); sizes.size() == NumDims;
Postconditions.
std::equal(sizes.begin(),sizes.end(),this->shape) == true;
template <typename BaseList> void reindex(const BaseList& values);
This changes the index bases of the multi_array
to
correspond to the the values in values
.
BaseList
Requirements. BaseList
must model
Collection.
Preconditions. values.size() == NumDims;
Postconditions. std::equal(values.begin(),values.end(),this->index_bases());
void reindex(index value);
This changes the index bases of all dimensions of the
multi_array
to value
.
Postconditions.
std::count_if(this->index_bases(),this->index_bases()+this->num_dimensions(), std::bind_2nd(std::equal_to<index>(),value)) == this->num_dimensions();
multi_array
is a multi-dimensional container that
supports random access iteration. Its number of dimensions is
fixed at compile time, but its shape and the number of elements it
contains are specified during its construction. The number of elements
will remain fixed for the duration of a
multi_array
's lifetime, but the shape of the container can
be changed. A multi_array
manages its data elements
using a replaceable allocator.
Model Of. MultiArray, CopyConstructible. Depending on the element type, it may also model EqualityComparable and LessThanComparable.
Synopsis.
namespace boost { template <typename ValueType, std::size_t NumDims, typename Allocator = std::allocator<ValueType> > class multi_array { public: // types: typedef ValueType element; typedef *unspecified* value_type; typedef *unspecified* reference; typedef *unspecified* const_reference; typedef *unspecified* difference_type; typedef *unspecified* iterator; typedef *unspecified* const_iterator; typedef *unspecified* reverse_iterator; typedef *unspecified* const_reverse_iterator; typedef multi_array_types::size_type size_type; typedef multi_array_types::index index; typedef multi_array_types::index_gen index_gen; typedef multi_array_types::index_range index_range; typedef multi_array_types::extent_gen extent_gen; typedef multi_array_types::extent_range extent_range; typedef *unspecified* storage_order_type; // template typedefs template <std::size_t Dims> struct subarray; template <std::size_t Dims> struct const_subarray; template <std::size_t Dims> struct array_view; template <std::size_t Dims> struct const_array_view; static const std::size_t dimensionality = NumDims; // constructors and destructors multi_array(const Allocator& alloc = Allocator()); template <typename ExtentList> explicit multi_array(const ExtentList& sizes, const storage_order_type& store = c_storage_order(), const Allocator& alloc = Allocator()); explicit multi_array(const extents_tuple& ranges, const storage_order_type& store = c_storage_order(), const Allocator& alloc = Allocator()); multi_array(const multi_array& x); multi_array(const const_multi_array_ref<ValueType,NumDims>& x, const Allocator& alloc = Allocator()); multi_array(const const_subarray<NumDims>::type& x, const Allocator& alloc = Allocator()); multi_array(const const_array_view<NumDims>::type& x, const Allocator& alloc = Allocator()); multi_array(const multi_array_ref<ValueType,NumDims>& x, const Allocator& alloc = Allocator()); multi_array(const subarray<NumDims>::type& x, const Allocator& alloc = Allocator()); multi_array(const array_view<NumDims>::type& x, const Allocator& alloc = Allocator()); ~multi_array(); // modifiers multi_array& operator=(const multi_array& x); template <class Array> multi_array& operator=(const Array& x); // iterators: iterator begin(); iterator end(); const_iterator begin() const; const_iterator end() const; reverse_iterator rbegin(); reverse_iterator rend(); const_reverse_iterator rbegin() const; const_reverse_iterator rend() const; // capacity: size_type size() const; size_type num_elements() const; size_type num_dimensions() const; // element access: template <typename IndexList> element& operator()(const IndexList& indices); template <typename IndexList> const element& operator()(const IndexList& indices) const; reference operator[](index i); const_reference operator[](index i) const; array_view<Dims>::type operator[](const indices_tuple& r); const_array_view<Dims>::type operator[](const indices_tuple& r) const; // queries element* data(); const element* data() const; element* origin(); const element* origin() const; const size_type* shape() const; const index* strides() const; const index* index_bases() const; const storage_order_type& storage_order() const; // comparators bool operator==(const multi_array& rhs); bool operator!=(const multi_array& rhs); bool operator<(const multi_array& rhs); bool operator>(const multi_array& rhs); bool operator>=(const multi_array& rhs); bool operator<=(const multi_array& rhs); // modifiers: template <typename InputIterator> void assign(InputIterator begin, InputIterator end); template <typename SizeList> void reshape(const SizeList& sizes) template <typename BaseList> void reindex(const BaseList& values); void reindex(index value); template <typename ExtentList> multi_array& resize(const ExtentList& extents); multi_array& resize(extents_tuple& extents); };
Constructors.
template <typename ExtentList> explicit multi_array(const ExtentList& sizes, const storage_order_type& store = c_storage_order(), const Allocator& alloc = Allocator());
This constructs a multi_array
using the specified
parameters. sizes
specifies the shape of the
constructed multi_array
. store
specifies the storage order or layout in memory of the array
dimensions. alloc
is used to
allocate the contained elements.
ExtentList
Requirements.
ExtentList
must model Collection.
Preconditions. sizes.size() == NumDims;
explicit multi_array(extent_gen::gen_type<NumDims>::type ranges, const storage_order_type& store = c_storage_order(), const Allocator& alloc = Allocator());
This constructs a multi_array
using the specified
parameters. ranges
specifies the shape and
index bases of the constructed multi_array. It is the result of
NumDims
chained calls to
extent_gen::operator[]
. store
specifies the storage order or layout in memory of the array
dimensions. alloc
is the allocator used to
allocate the memory used to store multi_array
elements.
multi_array(const multi_array& x); multi_array(const const_multi_array_ref<ValueType,NumDims>& x, const Allocator& alloc = Allocator()); multi_array(const const_subarray<NumDims>::type& x, const Allocator& alloc = Allocator()); multi_array(const const_array_view<NumDims>::type& x, const Allocator& alloc = Allocator()); multi_array(const multi_array_ref<ValueType,NumDims>& x, const Allocator& alloc = Allocator()); multi_array(const subarray<NumDims>::type& x, const Allocator& alloc = Allocator()); multi_array(const array_view<NumDims>::type& x, const Allocator& alloc = Allocator());
These constructors all constructs a multi_array
and
perform a deep copy of x
.
Complexity. This performs O(x.num_elements()
) calls to
element
's copy
constructor.
multi_array();
This constructs a multi_array
whose shape is (0,...,0) and contains no elements.
Note on Constructors.
The multi_array
construction expressions,
multi_array<int,3> A(boost::extents[5][4][3]);
and
boost::array<multi_array_base::index,3> my_extents = {{5, 4, 3}}; multi_array<int,3> A(my_extents);
are equivalent.
Modifiers.
multi_array& operator=(const multi_array& x); template <class Array> multi_array& operator=(const Array& x);
This performs an element-wise copy of x
into the current multi_array
.
Array
Requirements. Array
must model MultiArray.
Preconditions.
std::equal(this->shape(),this->shape()+this->num_dimensions(), x.shape());
Postconditions.
(*.this) == x;
Complexity. The assignment operators perform
O(x.num_elements()
) calls to element
's
copy constructor.
template <typename InputIterator> void assign(InputIterator begin, InputIterator end);
This copies the elements in the range
[begin,end)
into the array. It is equivalent to
std::copy(begin,end,this->data())
.
Preconditions. std::distance(begin,end) == this->num_elements();
Complexity.
The assign
member function performs
O(this->num_elements()
) calls to
ValueType
's copy constructor.
multi_array& resize(extent_gen::gen_type<NumDims>::type extents); template <typename ExtentList> multi_array& resize(const ExtentList& extents);
This function resizes an array to the shape specified by
extents
, which is either a generated list of
extents or a model of the Collection
concept. The
contents of the array are preserved whenever possible; if the new
array size is smaller, then some data will be lost. Any new elements
created by resizing the array are initialized with the
element
default constructor.
Queries.
storage_order_type& storage_order() const;
This query returns the storage order object associated with the
multi_array
in question. It can be used to construct a new array with the same storage order.
multi_array_ref
is a multi-dimensional container
adaptor. It provides the MultiArray interface over any contiguous
block of elements. multi_array_ref
exports the
same interface as multi_array
, with the exception
of the constructors.
Model Of.
multi_array_ref
models
MultiArray,
CopyConstructible.
and depending on the element type, it may also model
EqualityComparable and LessThanComparable.
Detailed descriptions are provided here only for operations that are
not described in the multi_array
reference.
Synopsis.
namespace boost { template <typename ValueType, std::size_t NumDims> class multi_array_ref { public: // types: typedef ValueType element; typedef *unspecified* value_type; typedef *unspecified* reference; typedef *unspecified* const_reference; typedef *unspecified* difference_type; typedef *unspecified* iterator; typedef *unspecified* const_iterator; typedef *unspecified* reverse_iterator; typedef *unspecified* const_reverse_iterator; typedef multi_array_types::size_type size_type; typedef multi_array_types::index index; typedef multi_array_types::index_gen index_gen; typedef multi_array_types::index_range index_range; typedef multi_array_types::extent_gen extent_gen; typedef multi_array_types::extent_range extent_range; typedef *unspecified* storage_order_type; // template typedefs template <std::size_t Dims> struct subarray; template <std::size_t Dims> struct const_subarray; template <std::size_t Dims> struct array_view; template <std::size_t Dims> struct const_array_view; static const std::size_t dimensionality = NumDims; // constructors and destructors template <typename ExtentList> explicit multi_array_ref(element* data, const ExtentList& sizes, const storage_order_type& store = c_storage_order()); explicit multi_array_ref(element* data, const extents_tuple& ranges, const storage_order_type& store = c_storage_order()); multi_array_ref(const multi_array_ref& x); ~multi_array_ref(); // modifiers multi_array_ref& operator=(const multi_array_ref& x); template <class Array> multi_array_ref& operator=(const Array& x); // iterators: iterator begin(); iterator end(); const_iterator begin() const; const_iterator end() const; reverse_iterator rbegin(); reverse_iterator rend(); const_reverse_iterator rbegin() const; const_reverse_iterator rend() const; // capacity: size_type size() const; size_type num_elements() const; size_type num_dimensions() const; // element access: template <typename IndexList> element& operator()(const IndexList& indices); template <typename IndexList> const element& operator()(const IndexList& indices) const; reference operator[](index i); const_reference operator[](index i) const; array_view<Dims>::type operator[](const indices_tuple& r); const_array_view<Dims>::type operator[](const indices_tuple& r) const; // queries element* data(); const element* data() const; element* origin(); const element* origin() const; const size_type* shape() const; const index* strides() const; const index* index_bases() const; const storage_order_type& storage_order() const; // comparators bool operator==(const multi_array_ref& rhs); bool operator!=(const multi_array_ref& rhs); bool operator<(const multi_array_ref& rhs); bool operator>(const multi_array_ref& rhs); bool operator>=(const multi_array_ref& rhs); bool operator<=(const multi_array_ref& rhs); // modifiers: template <typename InputIterator> void assign(InputIterator begin, InputIterator end); template <typename SizeList> void reshape(const SizeList& sizes) template <typename BaseList> void reindex(const BaseList& values); void reindex(index value); };
Constructors.
template <typename ExtentList> explicit multi_array_ref(element* data, const ExtentList& sizes, const storage_order& store = c_storage_order(), const Allocator& alloc = Allocator());
This constructs a multi_array_ref
using the specified
parameters. sizes
specifies the shape of the
constructed multi_array_ref
. store
specifies the storage order or layout in memory of the array
dimensions. alloc
is used to
allocate the contained elements.
ExtentList
Requirements.
ExtentList
must model Collection.
Preconditions. sizes.size() == NumDims;
explicit multi_array_ref(element* data, extent_gen::gen_type<NumDims>::type ranges, const storage_order& store = c_storage_order());
This constructs a multi_array_ref
using the specified
parameters. ranges
specifies the shape and
index bases of the constructed multi_array_ref. It is the result of
NumDims
chained calls to
extent_gen::operator[]
. store
specifies the storage order or layout in memory of the array
dimensions.
multi_array_ref(const multi_array_ref& x);
This constructs a shallow copy of x
.
Complexity. Constant time (for contrast, compare this to
the multi_array
class copy constructor.
Modifiers.
multi_array_ref& operator=(const multi_array_ref& x); template <class Array> multi_array_ref& operator=(const Array& x);
This performs an element-wise copy of x
into the current multi_array_ref
.
Array
Requirements. Array
must model MultiArray.
Preconditions.
std::equal(this->shape(),this->shape()+this->num_dimensions(), x.shape());
Postconditions.
(*.this) == x;
Complexity. The assignment operators perform
O(x.num_elements()
) calls to element
's
copy constructor.
const_multi_array_ref
is a multi-dimensional container
adaptor. It provides the MultiArray interface over any contiguous
block of elements. const_multi_array_ref
exports the
same interface as multi_array
, with the exception
of the constructors.
Model Of.
const_multi_array_ref
models
MultiArray,
CopyConstructible.
and depending on the element type, it may also model
EqualityComparable and LessThanComparable.
Detailed descriptions are provided here only for operations that are
not described in the multi_array
reference.
Synopsis.
namespace boost { template <typename ValueType, std::size_t NumDims, typename TPtr = const T*> class const_multi_array_ref { public: // types: typedef ValueType element; typedef *unspecified* value_type; typedef *unspecified* reference; typedef *unspecified* const_reference; typedef *unspecified* difference_type; typedef *unspecified* iterator; typedef *unspecified* const_iterator; typedef *unspecified* reverse_iterator; typedef *unspecified* const_reverse_iterator; typedef multi_array_types::size_type size_type; typedef multi_array_types::index index; typedef multi_array_types::index_gen index_gen; typedef multi_array_types::index_range index_range; typedef multi_array_types::extent_gen extent_gen; typedef multi_array_types::extent_range extent_range; typedef *unspecified* storage_order_type; // template typedefs template <std::size_t Dims> struct subarray; template <std::size_t Dims> struct const_subarray; template <std::size_t Dims> struct array_view; template <std::size_t Dims> struct const_array_view; // structors template <typename ExtentList> explicit const_multi_array_ref(TPtr data, const ExtentList& sizes, const storage_order_type& store = c_storage_order()); explicit const_multi_array_ref(TPtr data, const extents_tuple& ranges, const storage_order_type& store = c_storage_order()); const_multi_array_ref(const const_multi_array_ref& x); ~const_multi_array_ref(); // iterators: const_iterator begin() const; const_iterator end() const; const_reverse_iterator rbegin() const; const_reverse_iterator rend() const; // capacity: size_type size() const; size_type num_elements() const; size_type num_dimensions() const; // element access: template <typename IndexList> const element& operator()(const IndexList& indices) const; const_reference operator[](index i) const; const_array_view<Dims>::type operator[](const indices_tuple& r) const; // queries const element* data() const; const element* origin() const; const size_type* shape() const; const index* strides() const; const index* index_bases() const; const storage_order_type& storage_order() const; // comparators bool operator==(const const_multi_array_ref& rhs); bool operator!=(const const_multi_array_ref& rhs); bool operator<(const const_multi_array_ref& rhs); bool operator>(const const_multi_array_ref& rhs); bool operator>=(const const_multi_array_ref& rhs); bool operator<=(const const_multi_array_ref& rhs); // modifiers: template <typename SizeList> void reshape(const SizeList& sizes) template <typename BaseList> void reindex(const BaseList& values); void reindex(index value); };
Constructors.
template <typename ExtentList> explicit const_multi_array_ref(TPtr data, const ExtentList& sizes, const storage_order& store = c_storage_order());
This constructs a const_multi_array_ref
using the specified
parameters. sizes
specifies the shape of the
constructed const_multi_array_ref
. store
specifies the storage order or layout in memory of the array
dimensions.
ExtentList
Requirements.
ExtentList
must model Collection.
Preconditions. sizes.size() == NumDims;
explicit const_multi_array_ref(TPtr data, extent_gen::gen_type<NumDims>::type ranges, const storage_order& store = c_storage_order());
Effects.
This constructs a const_multi_array_ref
using the specified
parameters. ranges
specifies the shape and
index bases of the constructed const_multi_array_ref. It is the result of
NumDims
chained calls to
extent_gen::operator[]
. store
specifies the storage order or layout in memory of the array
dimensions.
const_multi_array_ref(const const_multi_array_ref& x);
Effects. This constructs a shallow copy of x
.