boost/container/devector.hpp
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Benedek Thaler 2015-2016
// (C) Copyright Ion Gaztanaga 2019-2020. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_CONTAINER_DEVECTOR_HPP
#define BOOST_CONTAINER_DEVECTOR_HPP
#include <boost/container/detail/config_begin.hpp>
#include <boost/container/detail/workaround.hpp>
//#include <algorithm>
#include <cstring> // memcpy
#include <boost/assert.hpp>
#include <boost/aligned_storage.hpp>
#include <boost/container/detail/copy_move_algo.hpp>
#include <boost/container/new_allocator.hpp> //new_allocator
#include <boost/container/allocator_traits.hpp> //allocator_traits
#include <boost/container/detail/algorithm.hpp> //equal()
#include <boost/container/throw_exception.hpp>
#include <boost/container/options.hpp>
#include <boost/container/detail/guards_dended.hpp>
#include <boost/container/detail/iterator.hpp>
#include <boost/container/detail/iterators.hpp>
#include <boost/container/detail/destroyers.hpp>
#include <boost/container/detail/min_max.hpp>
#include <boost/container/detail/next_capacity.hpp>
#include <boost/container/detail/alloc_helpers.hpp>
// move
#if defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
#include <boost/move/detail/fwd_macros.hpp>
#endif
#include <boost/move/detail/move_helpers.hpp>
#include <boost/move/adl_move_swap.hpp>
#include <boost/move/iterator.hpp>
#include <boost/move/traits.hpp>
#include <boost/move/utility_core.hpp>
#include <boost/move/detail/to_raw_pointer.hpp>
#include <boost/move/algo/detail/merge.hpp>
#include <boost/type_traits/is_nothrow_move_constructible.hpp>
//std
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
#include <initializer_list> //for std::initializer_list
#endif
namespace boost {
namespace container {
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
struct growth_factor_60;
template<class Options, class AllocatorSizeType>
struct get_devector_opt
{
typedef devector_opt< typename default_if_void<typename Options::growth_factor_type, growth_factor_60>::type
, typename default_if_void<typename Options::stored_size_type, AllocatorSizeType>::type
> type;
};
template<class AllocatorSizeType>
struct get_devector_opt<void, AllocatorSizeType>
{
typedef vector_opt<growth_factor_60, AllocatorSizeType> type;
};
#endif //#if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
struct reserve_only_tag_t {};
//struct unsafe_uninitialized_tag_t {};
/**
* A vector-like sequence container providing front and back operations
* (e.g: `push_front`/`pop_front`/`push_back`/`pop_back`) with amortized constant complexity
* and unsafe methods geared towards additional performance.
*
* Models the [SequenceContainer], [ReversibleContainer], and [AllocatorAwareContainer] concepts.
*
* **Requires**:
* - `T` shall be [MoveInsertable] into the devector.
* - `T` shall be [Erasable] from any `devector<T, allocator_type, GP>`.
* - `GrowthFactor`, and `Allocator` must model the concepts with the same names or be void.
*
* **Definition**: `T` is `NothrowConstructible` if it's either nothrow move constructible or
* nothrow copy constructible.
*
* **Definition**: `T` is `NothrowAssignable` if it's either nothrow move assignable or
* nothrow copy assignable.
*
* **Exceptions**: The exception specifications assume `T` is nothrow [Destructible].
*
* Most methods providing the strong exception guarantee assume `T` either has a move
* constructor marked noexcept or is [CopyInsertable] into the devector. If it isn't true,
* and the move constructor throws, the guarantee is waived and the effects are unspecified.
*
* In addition to the exceptions specified in the **Throws** clause, the following operations
* of `T` can throw when any of the specified concept is required:
* - [DefaultInsertable][]: Default constructor
* - [MoveInsertable][]: Move constructor
* - [CopyInsertable][]: Copy constructor
* - [DefaultConstructible][]: Default constructor
* - [EmplaceConstructible][]: Constructor selected by the given arguments
* - [MoveAssignable][]: Move assignment operator
* - [CopyAssignable][]: Copy assignment operator
*
* Furthermore, not `noexcept` methods throws whatever the allocator throws
* if memory allocation fails. Such methods also throw `length_error` if the capacity
* exceeds `max_size()`.
*
* **Remark**: If a method invalidates some iterators, it also invalidates references
* and pointers to the elements pointed by the invalidated iterators.
*
* **Policies**:
*
* @ref devector_growth_policy models the `GrowthFactor` concept.
*
* [SequenceContainer]: http://en.cppreference.com/w/cpp/concept/SequenceContainer
* [ReversibleContainer]: http://en.cppreference.com/w/cpp/concept/ReversibleContainer
* [AllocatorAwareContainer]: http://en.cppreference.com/w/cpp/concept/AllocatorAwareContainer
* [DefaultInsertable]: http://en.cppreference.com/w/cpp/concept/DefaultInsertable
* [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable
* [CopyInsertable]: http://en.cppreference.com/w/cpp/concept/CopyInsertable
* [Erasable]: http://en.cppreference.com/w/cpp/concept/Erasable
* [DefaultConstructible]: http://en.cppreference.com/w/cpp/concept/DefaultConstructible
* [Destructible]: http://en.cppreference.com/w/cpp/concept/Destructible
* [EmplaceConstructible]: http://en.cppreference.com/w/cpp/concept/EmplaceConstructible
* [MoveAssignable]: http://en.cppreference.com/w/cpp/concept/MoveAssignable
* [CopyAssignable]: http://en.cppreference.com/w/cpp/concept/CopyAssignable
*/
template < typename T, class A BOOST_CONTAINER_DOCONLY(= void), class Options BOOST_CONTAINER_DOCONLY(= void)>
class devector
{
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
typedef boost::container::allocator_traits
<typename real_allocator<T, A>::type> allocator_traits_type;
typedef typename allocator_traits_type::size_type alloc_size_type;
typedef typename get_devector_opt<Options, alloc_size_type>::type options_type;
typedef typename options_type::growth_factor_type growth_factor_type;
typedef typename options_type::stored_size_type stored_size_type;
#endif // ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
public:
// Standard Interface Types:
typedef T value_type;
typedef BOOST_CONTAINER_IMPDEF
(typename real_allocator<T BOOST_MOVE_I A>::type) allocator_type;
typedef allocator_type stored_allocator_type;
typedef typename allocator_traits<allocator_type>::pointer pointer;
typedef typename allocator_traits<allocator_type>::const_pointer const_pointer;
typedef typename allocator_traits<allocator_type>::reference reference;
typedef typename allocator_traits<allocator_type>::const_reference const_reference;
typedef typename allocator_traits<allocator_type>::size_type size_type;
typedef typename allocator_traits<allocator_type>::difference_type difference_type;
typedef pointer iterator;
typedef const_pointer const_iterator;
typedef BOOST_CONTAINER_IMPDEF
(boost::container::reverse_iterator<iterator>) reverse_iterator;
typedef BOOST_CONTAINER_IMPDEF
(boost::container::reverse_iterator<const_iterator>) const_reverse_iterator;
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
private:
BOOST_COPYABLE_AND_MOVABLE(devector)
// Guard to deallocate buffer on exception
typedef typename detail::allocation_guard<allocator_type> allocation_guard;
// Random access pseudo iterator always yielding to the same result
typedef constant_iterator<T, difference_type> cvalue_iterator;
#endif // ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
// Standard Interface
public:
// construct/copy/destroy
/**
* **Effects**: Constructs an empty devector.
*
* **Postcondition**: `empty() && front_free_capacity() == 0
* && back_free_capacity() == 0`.
*
* **Complexity**: Constant.
*/
devector() BOOST_NOEXCEPT
: m_()
{}
/**
* **Effects**: Constructs an empty devector, using the specified allocator.
*
* **Postcondition**: `empty() && front_free_capacity() == 0
* && back_free_capacity() == 0`.
*
* **Complexity**: Constant.
*/
explicit devector(const allocator_type& allocator) BOOST_NOEXCEPT
: m_(allocator)
{}
/**
* **Effects**: Constructs an empty devector, using the specified allocator
* and reserves `n` slots as if `reserve(n)` was called.
*
* **Postcondition**: `empty() && front_free_capacity() == 0
* && back_free_capacity() >= n`.
*
* **Exceptions**: Strong exception guarantee.
*
* **Complexity**: Constant.
*/
devector(size_type n, reserve_only_tag_t, const allocator_type& allocator = allocator_type())
: m_(allocator, this->allocate(n), 0u, 0u, n)
{}
/**
* **Effects**: Constructs an empty devector, using the specified allocator
* and reserves `front_cap + back_cap` slots as if `reserve_front(front_cap)` and
* `reserve_back(back_cap)` was called.
*
* **Postcondition**: `empty() && front_free_capacity() == front_cap
* && back_free_capacity() >= back_cap`.
*
* **Exceptions**: Strong exception guarantee.
*
* **Complexity**: Constant.
*/
devector(size_type front_cap, size_type back_cap, reserve_only_tag_t, const allocator_type& allocator = allocator_type())
: m_(allocator, this->allocate(front_cap + back_cap), front_cap, front_cap, front_cap + back_cap)
{}
/**
* [DefaultInsertable]: http://en.cppreference.com/w/cpp/concept/DefaultInsertable
*
* **Effects**: Constructs a devector with `n` default-inserted elements using the specified allocator.
*
* **Requires**: `T` shall be [DefaultInsertable] into `*this`.
*
* **Postcondition**: `size() == n && front_free_capacity() == 0`.
*
* **Exceptions**: Strong exception guarantee.
*
* **Complexity**: Linear in `n`.
*/
explicit devector(size_type n, const allocator_type& allocator = allocator_type())
: m_(allocator, n ? allocate(n): pointer(), 0u, n, n)
{
// Cannot use construct_from_range/constant_iterator and copy_range,
// because we are not allowed to default construct T
allocation_guard buffer_guard(m_.buffer, m_.capacity, get_allocator_ref());
detail::construction_guard<allocator_type> copy_guard(m_.buffer, get_allocator_ref());
for (size_type i = 0; i < n; ++i)
{
this->alloc_construct(m_.buffer + i);
copy_guard.extend();
}
copy_guard.release();
buffer_guard.release();
BOOST_ASSERT(invariants_ok());
}
/**
* [CopyInsertable]: http://en.cppreference.com/w/cpp/concept/CopyInsertable
*
* **Effects**: Constructs a devector with `n` copies of `value`, using the specified allocator.
*
* **Requires**: `T` shall be [CopyInsertable] into `*this`.
*
* **Postcondition**: `size() == n && front_free_capacity() == 0`.
*
* **Exceptions**: Strong exception guarantee.
*
* **Complexity**: Linear in `n`.
*/
devector(size_type n, const T& value, const allocator_type& allocator = allocator_type())
: m_(allocator, n ? allocate(n): pointer(), 0u, n, n)
{
construct_from_range(cvalue_iterator(value, n), cvalue_iterator());
BOOST_ASSERT(invariants_ok());
}
/**
* **Effects**: Constructs a devector equal to the range `[first,last)`, using the specified allocator.
*
* **Requires**: `T` shall be [EmplaceConstructible] into `*this` from `*first`. If the specified
* iterator does not meet the forward iterator requirements, `T` shall also be [MoveInsertable]
* into `*this`.
*
* **Postcondition**: `size() == boost::container::iterator_distance(first, last)
*
* **Exceptions**: Strong exception guarantee.
*
* **Complexity**: Makes only `N` calls to the copy constructor of `T` (where `N` is the distance between `first`
* and `last`), at most one allocation and no reallocations if iterators first and last are of forward,
* bidirectional, or random access categories. It makes `O(N)` calls to the copy constructor of `T`
* and `O(log(N)) reallocations if they are just input iterators.
*
* **Remarks**: Each iterator in the range `[first,last)` shall be dereferenced exactly once,
* unless an exception is thrown.
*
* [EmplaceConstructible]: http://en.cppreference.com/w/cpp/concept/EmplaceConstructible
* [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable
*/
template <class InputIterator>
devector(InputIterator first, InputIterator last, const allocator_type& allocator = allocator_type()
//Input iterators
BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_or
< void
BOOST_MOVE_I dtl::is_convertible<InputIterator BOOST_MOVE_I size_type>
BOOST_MOVE_I dtl::is_not_input_iterator<InputIterator>
>::type * = 0)
)
: m_(allocator, pointer(), 0u, 0u, 0u)
{
while (first != last) {
this->emplace_back(*first++);
}
BOOST_ASSERT(invariants_ok());
}
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
template <class ForwardIterator>
devector(ForwardIterator first, ForwardIterator last, const allocator_type& allocator = allocator_type()
//Other iterators
BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_or
< void
BOOST_MOVE_I dtl::is_convertible<ForwardIterator BOOST_MOVE_I size_type>
BOOST_MOVE_I dtl::is_input_iterator<ForwardIterator>
>::type * = 0)
)
: m_(allocator, pointer(), 0u, 0u, 0u)
{
const size_type n = boost::container::iterator_distance(first, last);
m_.buffer = n ? allocate(n) : pointer();
m_.front_idx = 0u;
//this->allocate(n) will take care of overflows
m_.set_back_idx(n);
m_.set_capacity(n);
//construct_from_range releases memory on failure
this->construct_from_range(first, last);
BOOST_ASSERT(invariants_ok());
}
#endif // ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
/**
* [CopyInsertable]: http://en.cppreference.com/w/cpp/concept/CopyInsertable
*
* **Effects**: Copy constructs a devector.
*
* **Requires**: `T` shall be [CopyInsertable] into `*this`.
*
* **Postcondition**: `this->size() == x.size() && front_free_capacity() == 0`.
*
* **Exceptions**: Strong exception guarantee.
*
* **Complexity**: Linear in the size of `x`.
*/
devector(const devector& x)
: m_( allocator_traits_type::select_on_container_copy_construction(x.get_allocator_ref())
, pointer(), 0u, 0u, 0u)
{
const size_type n = x.size();
m_.buffer = n ? allocate(n) : pointer();
m_.front_idx = 0u;
//this->allocate(n) will take care of overflows
m_.set_back_idx(n);
m_.set_capacity(n);
this->construct_from_range(x.begin(), x.end());
BOOST_ASSERT(invariants_ok());
}
/**
* [CopyInsertable]: http://en.cppreference.com/w/cpp/concept/CopyInsertable
*
* **Effects**: Copy constructs a devector, using the specified allocator.
*
* **Requires**: `T` shall be [CopyInsertable] into `*this`.
*
* **Postcondition**: `this->size() == x.size() && front_free_capacity() == 0`.
*
* **Exceptions**: Strong exception guarantee.
*
* **Complexity**: Linear in the size of `x`.
*/
devector(const devector& x, const allocator_type& allocator)
: m_(allocator, pointer(), 0u, 0u, 0u)
{
const size_type n = x.size();
m_.buffer = n ? this->allocate(n) : pointer();
m_.front_idx = 0u;
//this->allocate(n) will take care of overflows
m_.set_back_idx(n);
m_.set_capacity(n);
this->construct_from_range(x.begin(), x.end());
BOOST_ASSERT(invariants_ok());
}
/**
* **Effects**: Moves `rhs`'s resources to `*this`.
*
* **Throws**: Nothing.
*
* **Postcondition**: `rhs` is left in an unspecified but valid state.
*
* **Exceptions**: Strong exception guarantee if not `noexcept`.
*
* **Complexity**: Constant.
*/
devector(BOOST_RV_REF(devector) rhs) BOOST_NOEXCEPT_OR_NOTHROW
: m_(::boost::move(rhs.get_allocator_ref()), rhs.m_.buffer, rhs.m_.front_idx, rhs.m_.back_idx, rhs.capacity())
{
// buffer is already acquired, reset rhs
rhs.m_.capacity = 0u;
rhs.m_.buffer = pointer();
rhs.m_.front_idx = 0;
rhs.m_.back_idx = 0;
BOOST_ASSERT( invariants_ok());
BOOST_ASSERT(rhs.invariants_ok());
}
/**
* **Effects**: Moves `rhs`'s resources to `*this`, using the specified allocator.
*
* **Throws**: If allocation or T's move constructor throws.
*
* **Postcondition**: `rhs` is left in an unspecified but valid state.
*
* **Exceptions**: Strong exception guarantee if not `noexcept`.
*
* **Complexity**: Linear if allocator != rhs.get_allocator(), otherwise constant.
*/
devector(BOOST_RV_REF(devector) rhs, const allocator_type& allocator)
: m_(allocator, rhs.m_.buffer, rhs.m_.front_idx, rhs.m_.back_idx, rhs.capacity())
{
// TODO should move elems-by-elems if the two allocators differ
// buffer is already acquired, reset rhs
rhs.m_.capacity = 0u;
rhs.m_.buffer = pointer();
rhs.m_.front_idx = 0;
rhs.m_.back_idx = 0;
BOOST_ASSERT( invariants_ok());
BOOST_ASSERT(rhs.invariants_ok());
}
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
/**
* **Equivalent to**: `devector(il.begin(), il.end())` or `devector(il.begin(), il.end(), allocator)`.
*/
devector(const std::initializer_list<T>& il, const allocator_type& allocator = allocator_type())
: m_(allocator, pointer(), 0u, 0u, 0u)
{
const size_type n = il.size();
m_.buffer = n ? allocate(n) : pointer();
m_.front_idx = 0u;
//this->allocate(n) will take care of overflows
m_.set_back_idx(n);
m_.set_capacity(n);
//construct_from_range releases memory on failure
this->construct_from_range(il.begin(), il.end());
BOOST_ASSERT(invariants_ok());
}
#endif
/**
* **Effects**: Destroys the devector. All stored values are destroyed and
* used memory, if any, deallocated.
*
* **Complexity**: Linear in the size of `*this`.
*/
~devector() BOOST_NOEXCEPT
{
destroy_elements(m_.buffer + m_.front_idx, m_.buffer + m_.back_idx);
deallocate_buffer();
}
/**
* **Effects**: Copies elements of `x` to `*this`. Previously
* held elements get copy assigned to or destroyed.
*
* **Requires**: `T` shall be [CopyInsertable] into `*this`.
*
* **Postcondition**: `this->size() == x.size()`, the elements of
* `*this` are copies of elements in `x` in the same order.
*
* **Returns**: `*this`.
*
* **Exceptions**: Strong exception guarantee if `T` is `NothrowConstructible`
* and the allocator is allowed to be propagated
* ([propagate_on_container_copy_assignment] is true),
* Basic exception guarantee otherwise.
*
* **Complexity**: Linear in the size of `x` and `*this`.
*
* [CopyInsertable]: http://en.cppreference.com/w/cpp/concept/CopyInsertable
* [propagate_on_container_copy_assignment]: http://en.cppreference.com/w/cpp/memory/allocator_traits
*/
BOOST_CONTAINER_FORCEINLINE devector& operator=(BOOST_COPY_ASSIGN_REF(devector) rhs)
{
const devector &x = rhs;
if (this == &x) { return *this; } // skip self
BOOST_IF_CONSTEXPR(allocator_traits_type::propagate_on_container_copy_assignment::value)
{
allocator_type &this_alloc = this->get_allocator_ref();
const allocator_type &other_alloc = x.get_allocator_ref();
if (this_alloc != other_alloc)
{
// new allocator cannot free existing storage
this->clear();
this->deallocate_buffer();
m_.capacity = 0u;
m_.buffer = pointer();
}
this_alloc = other_alloc;
}
size_type n = x.size();
if (capacity() >= n)
{
this->overwrite_buffer(x.begin(), x.end());
}
else
{
this->allocate_and_copy_range(x.begin(), x.end());
}
BOOST_ASSERT(invariants_ok());
return *this;
}
/**
* [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable
*
* **Effects**: Moves elements of `x` to `*this`. Previously
* held elements get move/copy assigned to or destroyed.
*
* **Requires**: `T` shall be [MoveInsertable] into `*this`.
*
* **Postcondition**: `x` is left in an unspecified but valid state.
*
* **Returns**: `*this`.
*
* **Exceptions**: Basic exception guarantee if not `noexcept`.
*
* **Complexity**: Constant if allocator_traits_type::
* propagate_on_container_move_assignment is true or
* this->get>allocator() == x.get_allocator(). Linear otherwise.
*/
devector& operator=(BOOST_RV_REF(devector) x)
BOOST_NOEXCEPT_IF(allocator_traits_type::propagate_on_container_move_assignment::value
|| allocator_traits_type::is_always_equal::value)
{
BOOST_CONSTEXPR_OR_CONST bool copy_alloc = allocator_traits_type::propagate_on_container_move_assignment::value;
BOOST_IF_CONSTEXPR (copy_alloc || get_allocator_ref() == x.get_allocator_ref())
{
this->clear();
this->deallocate_buffer();
if (copy_alloc)
{
this->get_allocator_ref() = boost::move(x.get_allocator_ref());
}
m_.capacity = x.m_.capacity;
m_.buffer = x.m_.buffer;
m_.front_idx = x.m_.front_idx;
m_.back_idx = x.m_.back_idx;
// leave x in valid state
x.m_.capacity = 0u;
x.m_.buffer = pointer();
x.m_.back_idx = x.m_.front_idx = 0;
}
else
{
// if the allocator shouldn't be copied and they do not compare equal
// we can't steal memory.
move_iterator<iterator> xbegin = boost::make_move_iterator(x.begin());
move_iterator<iterator> xend = boost::make_move_iterator(x.end());
if (copy_alloc)
{
get_allocator_ref() = boost::move(x.get_allocator_ref());
}
if (capacity() >= x.size())
{
overwrite_buffer(xbegin, xend);
}
else
{
allocate_and_copy_range(xbegin, xend);
}
}
BOOST_ASSERT(invariants_ok());
return *this;
}
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
/**
* **Effects**: Copies elements of `il` to `*this`. Previously
* held elements get copy assigned to or destroyed.
*
* **Requires**: `T` shall be [CopyInsertable] into `*this` and [CopyAssignable].
*
* **Postcondition**: `this->size() == il.size()`, the elements of
* `*this` are copies of elements in `il` in the same order.
*
* **Exceptions**: Strong exception guarantee if `T` is nothrow copy assignable
* from `T` and `NothrowConstructible`, Basic exception guarantee otherwise.
*
* **Returns**: `*this`.
*
* **Complexity**: Linear in the size of `il` and `*this`.
*
* [CopyInsertable]: http://en.cppreference.com/w/cpp/concept/CopyInsertable
* [CopyAssignable]: http://en.cppreference.com/w/cpp/concept/CopyAssignable
*/
devector& operator=(std::initializer_list<T> il)
{
assign(il.begin(), il.end());
return *this;
}
#endif
/**
* **Effects**: Replaces elements of `*this` with a copy of `[first,last)`.
* Previously held elements get copy assigned to or destroyed.
*
* **Requires**: `T` shall be [EmplaceConstructible] from `*first`. If the specified iterator
* does not meet the forward iterator requirements, `T` shall be also [MoveInsertable] into `*this`.
*
* **Precondition**: `first` and `last` are not iterators into `*this`.
*
* **Postcondition**: `size() == N`, where `N` is the distance between `first` and `last`.
*
* **Exceptions**: Strong exception guarantee if `T` is nothrow copy assignable
* from `*first` and `NothrowConstructible`, Basic exception guarantee otherwise.
*
* **Complexity**: Linear in the distance between `first` and `last`.
* Makes a single reallocation at most if the iterators `first` and `last`
* are of forward, bidirectional, or random access categories. It makes
* `O(log(N))` reallocations if they are just input iterators.
*
* **Remarks**: Each iterator in the range `[first,last)` shall be dereferenced exactly once,
* unless an exception is thrown.
*
* [EmplaceConstructible]: http://en.cppreference.com/w/cpp/concept/EmplaceConstructible
* [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable
*/
template <class InputIterator>
void assign(InputIterator first, InputIterator last
//Input iterators
BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_or
< void
BOOST_MOVE_I dtl::is_convertible<InputIterator BOOST_MOVE_I size_type>
BOOST_MOVE_I dtl::is_not_input_iterator<InputIterator>
>::type * = 0)
)
{
first = overwrite_buffer_impl(first, last, dtl::false_());
while (first != last)
{
this->emplace_back(*first++);
}
}
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
template <class ForwardIterator>
void assign(ForwardIterator first, ForwardIterator last
//Other iterators
BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_or
< void
BOOST_MOVE_I dtl::is_convertible<ForwardIterator BOOST_MOVE_I size_type>
BOOST_MOVE_I dtl::is_input_iterator<ForwardIterator>
>::type * = 0)
)
{
const size_type n = boost::container::iterator_distance(first, last);
if (capacity() >= n)
{
overwrite_buffer(first, last);
}
else
{
allocate_and_copy_range(first, last);
}
BOOST_ASSERT(invariants_ok());
}
#endif // ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
/**
* **Effects**: Replaces elements of `*this` with `n` copies of `u`.
* Previously held elements get copy assigned to or destroyed.
*
* **Requires**: `T` shall be [CopyInsertable] into `*this` and
* [CopyAssignable].
*
* **Precondition**: `u` is not a reference into `*this`.
*
* **Postcondition**: `size() == n` and the elements of
* `*this` are copies of `u`.
*
* **Exceptions**: Strong exception guarantee if `T` is nothrow copy assignable
* from `u` and `NothrowConstructible`, Basic exception guarantee otherwise.
*
* **Complexity**: Linear in `n` and the size of `*this`.
*
* [CopyInsertable]: http://en.cppreference.com/w/cpp/concept/CopyInsertable
* [CopyAssignable]: http://en.cppreference.com/w/cpp/concept/CopyAssignable
*/
void assign(size_type n, const T& u)
{
cvalue_iterator first(u, n);
cvalue_iterator last;
assign(first, last);
}
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
/** **Equivalent to**: `assign(il.begin(), il.end())`. */
void assign(std::initializer_list<T> il)
{
assign(il.begin(), il.end());
}
#endif
/**
* **Returns**: A copy of the allocator associated with the container.
*
* **Complexity**: Constant.
*/
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
allocator_type get_allocator() const BOOST_NOEXCEPT
{
return static_cast<const allocator_type&>(m_);
}
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
const allocator_type &get_stored_allocator() const BOOST_NOEXCEPT
{
return static_cast<const allocator_type&>(m_);
}
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
allocator_type &get_stored_allocator() BOOST_NOEXCEPT
{
return static_cast<allocator_type&>(m_);
}
// iterators
/**
* **Returns**: A iterator pointing to the first element in the devector,
* or the past the end iterator if the devector is empty.
*
* **Complexity**: Constant.
*/
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
iterator begin() BOOST_NOEXCEPT
{
return m_.buffer + m_.front_idx;
}
/**
* **Returns**: A constant iterator pointing to the first element in the devector,
* or the past the end iterator if the devector is empty.
*
* **Complexity**: Constant.
*/
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
const_iterator begin() const BOOST_NOEXCEPT
{
return m_.buffer + m_.front_idx;
}
/**
* **Returns**: An iterator pointing past the last element of the container.
*
* **Complexity**: Constant.
*/
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
iterator end() BOOST_NOEXCEPT
{
return m_.buffer + m_.back_idx;
}
/**
* **Returns**: A constant iterator pointing past the last element of the container.
*
* **Complexity**: Constant.
*/
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
const_iterator end() const BOOST_NOEXCEPT
{
return m_.buffer + m_.back_idx;
}
/**
* **Returns**: A reverse iterator pointing to the first element in the reversed devector,
* or the reverse past the end iterator if the devector is empty.
*
* **Complexity**: Constant.
*/
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
reverse_iterator rbegin() BOOST_NOEXCEPT
{
return reverse_iterator(m_.buffer + m_.back_idx);
}
/**
* **Returns**: A constant reverse iterator
* pointing to the first element in the reversed devector,
* or the reverse past the end iterator if the devector is empty.
*
* **Complexity**: Constant.
*/
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
const_reverse_iterator rbegin() const BOOST_NOEXCEPT
{
return const_reverse_iterator(m_.buffer + m_.back_idx);
}
/**
* **Returns**: A reverse iterator pointing past the last element in the
* reversed container, or to the beginning of the reversed container if it's empty.
*
* **Complexity**: Constant.
*/
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
reverse_iterator rend() BOOST_NOEXCEPT
{
return reverse_iterator(m_.buffer + m_.front_idx);
}
/**
* **Returns**: A constant reverse iterator pointing past the last element in the
* reversed container, or to the beginning of the reversed container if it's empty.
*
* **Complexity**: Constant.
*/
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
const_reverse_iterator rend() const BOOST_NOEXCEPT
{
return const_reverse_iterator(m_.buffer + m_.front_idx);
}
/**
* **Returns**: A constant iterator pointing to the first element in the devector,
* or the past the end iterator if the devector is empty.
*
* **Complexity**: Constant.
*/
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
const_iterator cbegin() const BOOST_NOEXCEPT
{
return m_.buffer + m_.front_idx;
}
/**
* **Returns**: A constant iterator pointing past the last element of the container.
*
* **Complexity**: Constant.
*/
const_iterator cend() const BOOST_NOEXCEPT
{
return m_.buffer + m_.back_idx;
}
/**
* **Returns**: A constant reverse iterator
* pointing to the first element in the reversed devector,
* or the reverse past the end iterator if the devector is empty.
*
* **Complexity**: Constant.
*/
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
const_reverse_iterator crbegin() const BOOST_NOEXCEPT
{
return const_reverse_iterator(m_.buffer + m_.back_idx);
}
/**
* **Returns**: A constant reverse iterator pointing past the last element in the
* reversed container, or to the beginning of the reversed container if it's empty.
*
* **Complexity**: Constant.
*/
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
const_reverse_iterator crend() const BOOST_NOEXCEPT
{
return const_reverse_iterator(m_.buffer + m_.front_idx);
}
// capacity
/**
* **Returns**: True, if `size() == 0`, false otherwise.
*
* **Complexity**: Constant.
*/
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
bool empty() const BOOST_NOEXCEPT
{
return m_.front_idx == m_.back_idx;
}
/**
* **Returns**: The number of elements the devector contains.
*
* **Complexity**: Constant.
*/
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
size_type size() const BOOST_NOEXCEPT
{
return m_.back_idx - m_.front_idx;
}
/**
* **Returns**: The maximum number of elements the devector could possibly hold.
*
* **Complexity**: Constant.
*/
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
size_type max_size() const BOOST_NOEXCEPT
{
size_type alloc_max = allocator_traits_type::max_size(get_allocator_ref());
size_type size_type_max = (size_type)-1;
return (alloc_max <= size_type_max) ? size_type(alloc_max) : size_type_max;
}
/**
* **Returns**: The total number of elements that the devector can hold without requiring reallocation.
*
* **Complexity**: Constant.
*/
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
size_type capacity() const BOOST_NOEXCEPT
{
return m_.capacity;
}
/**
* **Returns**: The total number of elements that can be pushed to the front of the
* devector without requiring reallocation.
*
* **Complexity**: Constant.
*/
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
size_type front_free_capacity() const BOOST_NOEXCEPT
{
return m_.front_idx;
}
/**
* **Returns**: The total number of elements that can be pushed to the back of the
* devector without requiring reallocation.
*
* **Complexity**: Constant.
*/
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
size_type back_free_capacity() const BOOST_NOEXCEPT
{
return m_.capacity - m_.back_idx;
}
/** **Equivalent to**: `resize_back(sz)` */
void resize(size_type sz) { resize_back(sz); }
/** **Equivalent to**: `resize_back(sz, c)` */
void resize(size_type sz, const T& c) { resize_back(sz, c); }
/**
* **Effects**: If `sz` is greater than the size of `*this`,
* additional value-initialized elements are inserted
* to the front. Invalidates iterators if reallocation is needed.
* If `sz` is smaller than than the size of `*this`,
* elements are popped from the front.
*
* **Requires**: T shall be [MoveInsertable] into *this and [DefaultConstructible].
*
* **Postcondition**: `sz == size()`.
*
* **Exceptions**: Strong exception guarantee.
*
* **Complexity**: Linear in the size of `*this` and `sz`.
*
* [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable
* [DefaultConstructible]: http://en.cppreference.com/w/cpp/concept/DefaultConstructible
*/
void resize_front(size_type sz)
{
resize_front_impl(sz);
BOOST_ASSERT(invariants_ok());
}
/**
* [CopyInsertable]: http://en.cppreference.com/w/cpp/concept/CopyInsertable
*
* **Effects**: If `sz` is greater than the size of `*this`,
* copies of `c` are inserted to the front.
* Invalidates iterators if reallocation is needed.
* If `sz` is smaller than than the size of `*this`,
* elements are popped from the front.
*
* **Postcondition**: `sz == size()`.
*
* **Requires**: `T` shall be [CopyInsertable] into `*this`.
*
* **Exceptions**: Strong exception guarantee.
*
* **Complexity**: Linear in the size of `*this` and `sz`.
*/
void resize_front(size_type sz, const T& c)
{
resize_front_impl(sz, c);
BOOST_ASSERT(invariants_ok());
}
/**
* **Effects**: If `sz` is greater than the size of `*this`,
* additional value-initialized elements are inserted
* to the back. Invalidates iterators if reallocation is needed.
* If `sz` is smaller than than the size of `*this`,
* elements are popped from the back.
*
* **Requires**: T shall be [MoveInsertable] into *this and [DefaultConstructible].
*
* **Postcondition**: `sz == size()`.
*
* **Exceptions**: Strong exception guarantee.
*
* **Complexity**: Linear in the size of `*this` and `sz`.
*
* [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable
* [DefaultConstructible]: http://en.cppreference.com/w/cpp/concept/DefaultConstructible
*/
void resize_back(size_type sz)
{
resize_back_impl(sz);
BOOST_ASSERT(invariants_ok());
}
/**
* [CopyInsertable]: http://en.cppreference.com/w/cpp/concept/CopyInsertable
*
* **Effects**: If `sz` is greater than the size of `*this`,
* copies of `c` are inserted to the back.
* If `sz` is smaller than than the size of `*this`,
* elements are popped from the back.
*
* **Postcondition**: `sz == size()`.
*
* **Requires**: `T` shall be [CopyInsertable] into `*this`.
*
* **Exceptions**: Strong exception guarantee.
*
* **Complexity**: Linear in the size of `*this` and `sz`.
*/
void resize_back(size_type sz, const T& c)
{
resize_back_impl(sz, c);
BOOST_ASSERT(invariants_ok());
}
// unsafe uninitialized resize methods
/**
* **Unsafe method**, use with care.
*
* **Effects**: Changes the size of the devector without properly
* initializing the extra or destroying the superfluous elements.
* If `n < size()`, elements are removed from the front without
* getting destroyed; if `n > size()`, uninitialized elements are added
* before the first element at the front.
* Invalidates iterators if reallocation is needed.
*
* **Postcondition**: `size() == n`.
*
* **Exceptions**: Strong exception guarantee.
*
* **Complexity**: Linear in `size()` if `capacity() < n`, constant otherwise.
*
* **Remarks**: The devector does not keep track of initialization of the elements:
* Elements without a trivial destructor must be manually destroyed before shrinking,
* elements without a trivial constructor must be initialized after growing.
*/
/*
void unsafe_uninitialized_resize_front(size_type n)
{
if (n > size())
{
unsafe_uninitialized_grow_front(n);
}
else
{
unsafe_uninitialized_shrink_front(n);
}
}
*/
/**
* **Unsafe method**, use with care.
*
* **Effects**: Changes the size of the devector without properly
* initializing the extra or destroying the superfluous elements.
* If `n < size()`, elements are removed from the back without
* getting destroyed; if `n > size()`, uninitialized elements are added
* after the last element at the back.
* Invalidates iterators if reallocation is needed.
*
* **Postcondition**: `size() == n`.
*
* **Exceptions**: Strong exception guarantee.
*
* **Complexity**: Linear in `size()` if `capacity() < n`, constant otherwise.
*
* **Remarks**: The devector does not keep track of initialization of the elements:
* Elements without a trivial destructor must be manually destroyed before shrinking,
* elements without a trivial constructor must be initialized after growing.
*/
/*
void unsafe_uninitialized_resize_back(size_type n)
{
if (n > size())
{
unsafe_uninitialized_grow_back(n);
}
else
{
unsafe_uninitialized_shrink_back(n);
}
}
*/
// reserve promise:
// after reserve_[front,back](n), n - size() push_[front,back] will not allocate
/** **Equivalent to**: `reserve_back(new_capacity)` */
void reserve(size_type new_capacity) { reserve_back(new_capacity); }
/**
* [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable
*
* **Effects**: Ensures that `n` elements can be pushed to the front
* without requiring reallocation, where `n` is `new_capacity - size()`,
* if `n` is positive. Otherwise, there are no effects.
* Invalidates iterators if reallocation is needed.
*
* **Requires**: `T` shall be [MoveInsertable] into `*this`.
*
* **Complexity**: Linear in the size of *this.
*
* **Exceptions**: Strong exception guarantee.
*
* **Throws**: `length_error` if `new_capacity > max_size()`.
*/
void reserve_front(size_type new_capacity)
{
if (front_capacity() >= new_capacity) { return; }
reallocate_at(new_capacity + back_free_capacity(), new_capacity - size());
BOOST_ASSERT(invariants_ok());
}
/**
* [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable
*
* **Effects**: Ensures that `n` elements can be pushed to the back
* without requiring reallocation, where `n` is `new_capacity - size()`,
* if `n` is positive. Otherwise, there are no effects.
* Invalidates iterators if reallocation is needed.
*
* **Requires**: `T` shall be [MoveInsertable] into `*this`.
*
* **Complexity**: Linear in the size of *this.
*
* **Exceptions**: Strong exception guarantee.
*
* **Throws**: length_error if `new_capacity > max_size()`.
*/
void reserve_back(size_type new_capacity)
{
if (back_capacity() >= new_capacity) { return; }
reallocate_at(new_capacity + front_free_capacity(), m_.front_idx);
BOOST_ASSERT(invariants_ok());
}
/**
* [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable
*
* **Effects**: Reduces `capacity()` to `size()`. Invalidates iterators.
*
* **Requires**: `T` shall be [MoveInsertable] into `*this`.
*
* **Exceptions**: Strong exception guarantee.
*
* **Complexity**: Linear in the size of *this.
*/
void shrink_to_fit()
{
if(this->front_capacity() || this->back_capacity())
this->reallocate_at(size(), 0);
}
// element access:
/**
* **Returns**: A reference to the `n`th element in the devector.
*
* **Precondition**: `n < size()`.
*
* **Complexity**: Constant.
*/
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
reference operator[](size_type n) BOOST_NOEXCEPT
{
BOOST_ASSERT(n < size());
return *(begin() + n);
}
/**
* **Returns**: A constant reference to the `n`th element in the devector.
*
* **Precondition**: `n < size()`.
*
* **Complexity**: Constant.
*/
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
const_reference operator[](size_type n) const BOOST_NOEXCEPT
{
BOOST_ASSERT(n < size());
return *(begin() + n);
}
/**
* **Returns**: A reference to the `n`th element in the devector.
*
* **Throws**: `out_of_range`, if `n >= size()`.
*
* **Complexity**: Constant.
*/
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
reference at(size_type n)
{
if (size() <= n)
throw_out_of_range("devector::at out of range");
return (*this)[n];
}
/**
* **Returns**: A constant reference to the `n`th element in the devector.
*
* **Throws**: `out_of_range`, if `n >= size()`.
*
* **Complexity**: Constant.
*/
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
const_reference at(size_type n) const
{
if (size() <= n)
throw_out_of_range("devector::at out of range");
return (*this)[n];
}
/**
* **Returns**: A reference to the first element in the devector.
*
* **Precondition**: `!empty()`.
*
* **Complexity**: Constant.
*/
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
reference front() BOOST_NOEXCEPT
{
BOOST_ASSERT(!empty());
return *(m_.buffer + m_.front_idx);
}
/**
* **Returns**: A constant reference to the first element in the devector.
*
* **Precondition**: `!empty()`.
*
* **Complexity**: Constant.
*/
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
const_reference front() const BOOST_NOEXCEPT
{
BOOST_ASSERT(!empty());
return *(m_.buffer + m_.front_idx);
}
/**
* **Returns**: A reference to the last element in the devector.
*
* **Precondition**: `!empty()`.
*
* **Complexity**: Constant.
*/
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
reference back() BOOST_NOEXCEPT
{
BOOST_ASSERT(!empty());
return *(m_.buffer + m_.back_idx -1);
}
/**
* **Returns**: A constant reference to the last element in the devector.
*
* **Precondition**: `!empty()`.
*
* **Complexity**: Constant.
*/
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
const_reference back() const BOOST_NOEXCEPT
{
BOOST_ASSERT(!empty());
return *(m_.buffer + m_.back_idx -1);
}
/**
* **Returns**: A pointer to the underlying array serving as element storage.
* The range `[data(); data() + size())` is always valid. For a non-empty devector,
* `data() == &front()`.
*
* **Complexity**: Constant.
*/
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
T* data() BOOST_NOEXCEPT
{
return boost::movelib::to_raw_pointer(m_.buffer) + m_.front_idx;
}
/**
* **Returns**: A constant pointer to the underlying array serving as element storage.
* The range `[data(); data() + size())` is always valid. For a non-empty devector,
* `data() == &front()`.
*
* **Complexity**: Constant.
*/
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
const T* data() const BOOST_NOEXCEPT
{
return boost::movelib::to_raw_pointer(m_.buffer) + m_.front_idx;
}
// modifiers:
/**
* **Effects**: Pushes a new element to the front of the devector.
* The element is constructed in-place, using the perfect forwarded `args`
* as constructor arguments. Invalidates iterators if reallocation is needed.
* (`front_free_capacity() == 0`)
*
* **Requires**: `T` shall be [EmplaceConstructible] from `args` and [MoveInsertable] into `*this`.
*
* **Exceptions**: Strong exception guarantee.
*
* **Complexity**: Amortized constant in the size of `*this`.
* (Constant, if `front_free_capacity() > 0`)
*
* [EmplaceConstructible]: http://en.cppreference.com/w/cpp/concept/EmplaceConstructible
* [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable
*/
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
template <class... Args>
void emplace_front(Args&&... args)
{
if (front_free_capacity()) // fast path
{
this->alloc_construct(m_.buffer + m_.front_idx - 1, boost::forward<Args>(args)...);
--m_.front_idx;
}
else
{
this->emplace_reallocating_slow_path(true, 0, boost::forward<Args>(args)...);
}
BOOST_ASSERT(invariants_ok());
}
#else //!defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
#define BOOST_CONTAINER_DEVECTOR_EMPLACE_FRONT(N) \
BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \
BOOST_CONTAINER_FORCEINLINE void emplace_front(BOOST_MOVE_UREF##N)\
{\
if (front_free_capacity())\
{\
this->alloc_construct(m_.buffer + m_.front_idx - 1 BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
--m_.front_idx;\
}\
else\
{\
this->emplace_reallocating_slow_path(true, 0 BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
}\
\
BOOST_ASSERT(invariants_ok());\
}\
//
BOOST_MOVE_ITERATE_0TO9(BOOST_CONTAINER_DEVECTOR_EMPLACE_FRONT)
#undef BOOST_CONTAINER_DEVECTOR_EMPLACE_FRONT
#endif
#if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
/**
* [CopyInsertable]: http://en.cppreference.com/w/cpp/concept/CopyInsertable
*
* **Effects**: Pushes the copy of `x` to the front of the devector.
* Invalidates iterators if reallocation is needed.
* (`front_free_capacity() == 0`)
*
* **Requires**: `T` shall be [CopyInsertable] into `*this`.
*
* **Exceptions**: Strong exception guarantee.
*
* **Complexity**: Amortized constant in the size of `*this`.
* (Constant, if `front_free_capacity() > 0`)
*/
void push_front(const T& x);
/**
* [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable
*
* **Effects**: Move constructs a new element at the front of the devector using `x`.
* Invalidates iterators if reallocation is needed.
* (`front_free_capacity() == 0`)
*
* **Requires**: `T` shall be [MoveInsertable] into `*this`.
*
* **Exceptions**: Strong exception guarantee, not regarding the state of `x`.
*
* **Complexity**: Amortized constant in the size of `*this`.
* (Constant, if `front_free_capacity() > 0`)
*/
void push_front(T&& x);
#else
BOOST_MOVE_CONVERSION_AWARE_CATCH(push_front, T, void, priv_push_front)
#endif
/**
* **Effects**: Removes the first element of `*this`.
*
* **Precondition**: `!empty()`.
*
* **Postcondition**: `front_free_capacity()` is incremented by 1.
*
* **Complexity**: Constant.
*/
void pop_front() BOOST_NOEXCEPT
{
BOOST_ASSERT(! empty());
allocator_traits_type::destroy(get_allocator_ref(), m_.buffer + m_.front_idx);
++m_.front_idx;
BOOST_ASSERT(invariants_ok());
}
/**
* **Effects**: Pushes a new element to the back of the devector.
* The element is constructed in-place, using the perfect forwarded `args`
* as constructor arguments. Invalidates iterators if reallocation is needed.
* (`back_free_capacity() == 0`)
*
* **Requires**: `T` shall be [EmplaceConstructible] from `args` and [MoveInsertable] into `*this`,
* and [MoveAssignable].
*
* **Exceptions**: Strong exception guarantee.
*
* **Complexity**: Amortized constant in the size of `*this`.
* (Constant, if `back_free_capacity() > 0`)
*
* [EmplaceConstructible]: http://en.cppreference.com/w/cpp/concept/EmplaceConstructible
* [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable
* [MoveAssignable]: http://en.cppreference.com/w/cpp/concept/MoveAssignable
*/
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
template <class... Args>
BOOST_CONTAINER_FORCEINLINE void emplace_back(Args&&... args)
{
if (this->back_free_capacity()){
this->alloc_construct(m_.buffer + m_.back_idx, boost::forward<Args>(args)...);
++m_.back_idx;
}
else {
this->emplace_reallocating_slow_path(false, size(), boost::forward<Args>(args)...);
}
BOOST_ASSERT(invariants_ok());
}
#else //!defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
#define BOOST_CONTAINER_DEVECTOR_EMPLACE_BACK(N) \
BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \
BOOST_CONTAINER_FORCEINLINE void emplace_back(BOOST_MOVE_UREF##N)\
{\
if (this->back_free_capacity()){\
this->alloc_construct(m_.buffer + m_.back_idx BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
++m_.back_idx;\
}\
else {\
this->emplace_reallocating_slow_path(false, size() BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
}\
BOOST_ASSERT(invariants_ok());\
}\
//
BOOST_MOVE_ITERATE_0TO9(BOOST_CONTAINER_DEVECTOR_EMPLACE_BACK)
#undef BOOST_CONTAINER_DEVECTOR_EMPLACE_BACK
#endif //!defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
#if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
/**
* [CopyInsertable]: http://en.cppreference.com/w/cpp/concept/CopyInsertable
*
* **Effects**: Pushes the copy of `x` to the back of the devector.
* Invalidates iterators if reallocation is needed.
* (`back_free_capacity() == 0`)
*
* **Requires**: `T` shall be [CopyInsertable] into `*this`.
*
* **Exceptions**: Strong exception guarantee.
*
* **Complexity**: Amortized constant in the size of `*this`.
* (Constant, if `back_free_capacity() > 0`)
*/
void push_back(const T& x);
/**
* [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable
*
* **Effects**: Move constructs a new element at the back of the devector using `x`.
* Invalidates iterators if reallocation is needed.
* (`back_free_capacity() == 0`)
*
* **Requires**: `T` shall be [MoveInsertable] into `*this`.
*
* **Exceptions**: Strong exception guarantee, not regarding the state of `x`.
*
* **Complexity**: Amortized constant in the size of `*this`.
* (Constant, if `back_free_capacity() > 0`)
*/
void push_back(T&& x);
#else
BOOST_MOVE_CONVERSION_AWARE_CATCH(push_back, T, void, priv_push_back)
#endif
/**
* **Effects**: Removes the last element of `*this`.
*
* **Precondition**: `!empty()`.
*
* **Postcondition**: `back_free_capacity()` is incremented by 1.
*
* **Complexity**: Constant.
*/
void pop_back() BOOST_NOEXCEPT
{
BOOST_ASSERT(! empty());
--m_.back_idx;
allocator_traits_type::destroy(get_allocator_ref(), m_.buffer + m_.back_idx);
BOOST_ASSERT(invariants_ok());
}
/**
* **Effects**: Constructs a new element before the element pointed by `position`.
* The element is constructed in-place, using the perfect forwarded `args`
* as constructor arguments. Invalidates iterators if reallocation is needed.
*
* **Requires**: `T` shall be [EmplaceConstructible], and [MoveInsertable] into `*this`,
* and [MoveAssignable].
*
* **Returns**: Iterator pointing to the newly constructed element.
*
* **Exceptions**: Strong exception guarantee if `T` is `NothrowConstructible`
* and `NothrowAssignable`, Basic exception guarantee otherwise.
*
* **Complexity**: Linear in the size of `*this`.
*
* [EmplaceConstructible]: http://en.cppreference.com/w/cpp/concept/EmplaceConstructible
* [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable
* [MoveAssignable]: http://en.cppreference.com/w/cpp/concept/MoveAssignable
*/
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
template <class... Args>
iterator emplace(const_iterator position, Args&&... args)
{
BOOST_ASSERT(position >= begin());
BOOST_ASSERT(position <= end());
if (position == end() && back_free_capacity()) // fast path
{
this->alloc_construct(m_.buffer + m_.back_idx, boost::forward<Args>(args)...);
++m_.back_idx;
return end() - 1;
}
else if (position == begin() && front_free_capacity()) // secondary fast path
{
this->alloc_construct(m_.buffer + (m_.front_idx - 1), boost::forward<Args>(args)...);
--m_.front_idx;
return begin();
}
else
{
size_type new_elem_index = position - begin();
return this->emplace_slow_path(new_elem_index, boost::forward<Args>(args)...);
}
}
#else //!defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
#define BOOST_CONTAINER_DEVECTOR_EMPLACE(N) \
BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \
iterator emplace(const_iterator position BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\
{\
BOOST_ASSERT(position >= begin());\
BOOST_ASSERT(position <= end());\
\
if (position == end() && back_free_capacity()){\
this->alloc_construct(m_.buffer + m_.back_idx BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
++m_.back_idx;\
return end() - 1;\
}\
else if (position == begin() && front_free_capacity()){\
this->alloc_construct(m_.buffer + m_.front_idx - 1 BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
--m_.front_idx;\
return begin();\
}\
else{\
size_type new_elem_index = position - begin();\
return this->emplace_slow_path(new_elem_index BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
}\
}\
//
BOOST_MOVE_ITERATE_0TO9(BOOST_CONTAINER_DEVECTOR_EMPLACE)
#undef BOOST_CONTAINER_DEVECTOR_EMPLACE
#endif //!defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
#if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
/**
* **Effects**: Copy constructs a new element before the element pointed by `position`,
* using `x` as constructor argument. Invalidates iterators if reallocation is needed.
*
* **Requires**: `T` shall be [CopyInsertable] into `*this` and and [CopyAssignable].
*
* **Returns**: Iterator pointing to the newly constructed element.
*
* **Exceptions**: Strong exception guarantee if `T` is `NothrowConstructible`
* and `NothrowAssignable`, Basic exception guarantee otherwise.
*
* **Complexity**: Linear in the size of `*this`.
*
* [CopyInsertable]: http://en.cppreference.com/w/cpp/concept/CopyInsertable
* [CopyAssignable]: http://en.cppreference.com/w/cpp/concept/CopyAssignable
*/
iterator insert(const_iterator position, const T &x);
/**
* **Effects**: Move constructs a new element before the element pointed by `position`,
* using `x` as constructor argument. Invalidates iterators if reallocation is needed.
*
* **Requires**: `T` shall be [MoveInsertable] into `*this` and and [CopyAssignable].
*
* **Returns**: Iterator pointing to the newly constructed element.
*
* **Exceptions**: Strong exception guarantee if `T` is `NothrowConstructible`
* and `NothrowAssignable` (not regarding the state of `x`),
* Basic exception guarantee otherwise.
*
* **Complexity**: Linear in the size of `*this`.
*
* [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable
* [CopyAssignable]: http://en.cppreference.com/w/cpp/concept/CopyAssignable
*/
iterator insert(const_iterator position, T &&x);
#else
BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert, T, iterator, priv_insert, const_iterator, const_iterator)
#endif
/**
* **Effects**: Copy constructs `n` elements before the element pointed by `position`,
* using `x` as constructor argument. Invalidates iterators if reallocation is needed.
*
* **Requires**: `T` shall be [CopyInsertable] into `*this` and and [CopyAssignable].
*
* **Returns**: Iterator pointing to the first inserted element, or `position`, if `n` is zero.
*
* **Exceptions**: Strong exception guarantee if `T` is `NothrowConstructible`
* and `NothrowAssignable`, Basic exception guarantee otherwise.
*
* **Complexity**: Linear in the size of `*this` and `n`.
*
* [CopyInsertable]: http://en.cppreference.com/w/cpp/concept/CopyInsertable
* [CopyAssignable]: http://en.cppreference.com/w/cpp/concept/CopyAssignable
*/
iterator insert(const_iterator position, size_type n, const T& x)
{
cvalue_iterator first(x, n);
cvalue_iterator last = first + n;
return insert_range(position, first, last);
}
/**
* **Effects**: Copy constructs elements before the element pointed by position
* using each element in the rage pointed by `first` and `last` as constructor arguments.
* Invalidates iterators if reallocation is needed.
*
* **Requires**: `T` shall be [EmplaceConstructible] into `*this` from `*first`. If the specified iterator
* does not meet the forward iterator requirements, `T` shall also be [MoveInsertable] into `*this`
* and [MoveAssignable].
*
* **Precondition**: `first` and `last` are not iterators into `*this`.
*
* **Returns**: Iterator pointing to the first inserted element, or `position`, if `first == last`.
*
* **Complexity**: Linear in the size of `*this` and `N` (where `N` is the distance between `first` and `last`).
* Makes only `N` calls to the constructor of `T` and no reallocations if iterators `first` and `last`
* are of forward, bidirectional, or random access categories. It makes 2N calls to the copy constructor of `T`
* and allocates memory twice at most if they are just input iterators.
*
* **Exceptions**: Strong exception guarantee if `T` is `NothrowConstructible`
* and `NothrowAssignable`, Basic exception guarantee otherwise.
*
* **Remarks**: Each iterator in the range `[first,last)` shall be dereferenced exactly once,
* unless an exception is thrown.
*
* [EmplaceConstructible]: http://en.cppreference.com/w/cpp/concept/EmplaceConstructible
* [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable
* [MoveAssignable]: http://en.cppreference.com/w/cpp/concept/MoveAssignable
*/
template <class InputIterator>
iterator insert(const_iterator position, InputIterator first, InputIterator last
//Input iterators
BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_or
< void
BOOST_MOVE_I dtl::is_convertible<InputIterator BOOST_MOVE_I size_type>
BOOST_MOVE_I dtl::is_not_input_iterator<InputIterator>
>::type * = 0)
)
{
if (position == end())
{
size_type insert_index = size();
for (; first != last; ++first)
{
this->emplace_back(*first);
}
return begin() + insert_index;
}
else
{
const size_type insert_index = static_cast<size_type>(position - this->cbegin());
const size_type old_size = static_cast<size_type>(this->size());
for (; first != last; ++first) {
this->emplace_back(*first);
}
iterator rit (this->begin() + insert_index);
boost::movelib::rotate_gcd(rit, this->begin() + old_size, this->begin() + this->size());
return rit;
}
}
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
template <class ForwardIterator>
iterator insert(const_iterator position, ForwardIterator first, ForwardIterator last
//Other iterators
BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I typename dtl::disable_if_or
< void
BOOST_MOVE_I dtl::is_convertible<ForwardIterator BOOST_MOVE_I size_type>
BOOST_MOVE_I dtl::is_input_iterator<ForwardIterator>
>::type * = 0)
)
{
return insert_range(position, first, last);
}
#endif // ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
/** **Equivalent to**: `insert(position, il.begin(), il.end())` */
iterator insert(const_iterator position, std::initializer_list<T> il)
{
return insert_range(position, il.begin(), il.end());
}
#endif
/**
* [MoveAssignable]: http://en.cppreference.com/w/cpp/concept/MoveAssignable
*
* **Effects**: Destroys the element pointed by `position` and removes it from the devector.
* Invalidates iterators.
*
* **Requires**: `T` shall be [MoveAssignable].
*
* **Precondition**: `position` must be in the range of `[begin(), end())`.
*
* **Returns**: Iterator pointing to the element immediately following the erased element
* prior to its erasure. If no such element exists, `end()` is returned.
*
* **Exceptions**: Strong exception guarantee if `T` is `NothrowAssignable`,
* Basic exception guarantee otherwise.
*
* **Complexity**: Linear in half the size of `*this`.
*/
iterator erase(const_iterator position)
{
return erase(position, position + 1);
}
/**
* [MoveAssignable]: http://en.cppreference.com/w/cpp/concept/MoveAssignable
*
* **Effects**: Destroys the range `[first,last)` and removes it from the devector.
* Invalidates iterators.
*
* **Requires**: `T` shall be [MoveAssignable].
*
* **Precondition**: `[first,last)` must be in the range of `[begin(), end())`.
*
* **Returns**: Iterator pointing to the element pointed to by `last` prior to any elements
* being erased. If no such element exists, `end()` is returned.
*
* **Exceptions**: Strong exception guarantee if `T` is `NothrowAssignable`,
* Basic exception guarantee otherwise.
*
* **Complexity**: Linear in half the size of `*this`
* plus the distance between `first` and `last`.
*/
iterator erase(const_iterator first, const_iterator last)
{
iterator nc_first = begin() + (first - begin());
iterator nc_last = begin() + (last - begin());
return erase(nc_first, nc_last);
}
/**
* [MoveAssignable]: http://en.cppreference.com/w/cpp/concept/MoveAssignable
*
* **Effects**: Destroys the range `[first,last)` and removes it from the devector.
* Invalidates iterators.
*
* **Requires**: `T` shall be [MoveAssignable].
*
* **Precondition**: `[first,last)` must be in the range of `[begin(), end())`.
*
* **Returns**: Iterator pointing to the element pointed to by `last` prior to any elements
* being erased. If no such element exists, `end()` is returned.
*
* **Exceptions**: Strong exception guarantee if `T` is `NothrowAssignable`,
* Basic exception guarantee otherwise.
*
* **Complexity**: Linear in half the size of `*this`.
*/
iterator erase(iterator first, iterator last)
{
size_type front_distance = last - begin();
size_type back_distance = end() - first;
size_type n = boost::container::iterator_distance(first, last);
if (front_distance < back_distance)
{
// move n to the right
boost::container::move_backward(begin(), first, last);
for (iterator i = begin(); i != begin() + n; ++i)
{
allocator_traits_type::destroy(get_allocator_ref(), i);
}
//n is always less than max stored_size_type
m_.set_front_idx(m_.front_idx + n);
BOOST_ASSERT(invariants_ok());
return last;
}
else {
// move n to the left
boost::container::move(last, end(), first);
for (iterator i = end() - n; i != end(); ++i)
{
allocator_traits_type::destroy(get_allocator_ref(), i);
}
//n is always less than max stored_size_type
m_.set_back_idx(m_.back_idx - n);
BOOST_ASSERT(invariants_ok());
return first;
}
}
/**
* [MoveInsertable]: http://en.cppreference.com/w/cpp/concept/MoveInsertable
*
* **Effects**: exchanges the contents of `*this` and `b`.
*
* **Requires**: instances of `T` must be swappable by unqualified call of `swap`
* and `T` must be [MoveInsertable] into `*this`.
*
* **Precondition**: The allocators should allow propagation or should compare equal.
*
* **Exceptions**: Basic exceptions guarantee if not `noexcept`.
*
* **Complexity**: Constant.
*/
void swap(devector& b)
BOOST_NOEXCEPT_IF( allocator_traits_type::propagate_on_container_swap::value
|| allocator_traits_type::is_always_equal::value)
{
BOOST_CONSTEXPR_OR_CONST bool propagate_alloc = allocator_traits_type::propagate_on_container_swap::value;
BOOST_ASSERT(propagate_alloc || get_allocator_ref() == b.get_allocator_ref()); // else it's undefined behavior
swap_big_big(*this, b);
// swap indices
boost::adl_move_swap(m_.front_idx, b.m_.front_idx);
boost::adl_move_swap(m_.back_idx, b.m_.back_idx);
//And now swap the allocator
dtl::swap_alloc(this->get_allocator_ref(), b.get_allocator_ref(), dtl::bool_<propagate_alloc>());
BOOST_ASSERT( invariants_ok());
BOOST_ASSERT(b.invariants_ok());
}
/**
* **Effects**: Destroys all elements in the devector.
* Invalidates all references, pointers and iterators to the
* elements of the devector.
*
* **Postcondition**: `empty() && front_free_capacity() == 0
* && back_free_capacity() == old capacity`.
*
* **Complexity**: Linear in the size of `*this`.
*
* **Remarks**: Does not free memory.
*/
void clear() BOOST_NOEXCEPT
{
destroy_elements(begin(), end());
m_.front_idx = m_.back_idx = 0;
}
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
friend bool operator==(const devector& x, const devector& y)
{ return x.size() == y.size() && ::boost::container::algo_equal(x.begin(), x.end(), y.begin()); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
friend bool operator!=(const devector& x, const devector& y)
{ return !(x == y); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
friend bool operator< (const devector& x, const devector& y)
{ return boost::container::algo_lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
friend bool operator>(const devector& x, const devector& y)
{ return y < x; }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
friend bool operator<=(const devector& x, const devector& y)
{ return !(y < x); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
friend bool operator>=(const devector& x, const devector& y)
{ return !(x < y); }
BOOST_CONTAINER_FORCEINLINE friend void swap(devector& x, devector& y)
BOOST_NOEXCEPT_IF( allocator_traits_type::propagate_on_container_swap::value
|| allocator_traits_type::is_always_equal::value)
{ x.swap(y); }
private:
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
BOOST_CONTAINER_FORCEINLINE T* raw_begin() BOOST_NOEXCEPT
{ return boost::movelib::to_raw_pointer(m_.buffer) + m_.front_idx; }
BOOST_CONTAINER_FORCEINLINE T* raw_end() BOOST_NOEXCEPT
{ return boost::movelib::to_raw_pointer(m_.buffer) + m_.back_idx; }
template <class U>
BOOST_CONTAINER_FORCEINLINE void priv_push_front(BOOST_FWD_REF(U) u)
{
this->emplace_front(boost::forward<U>(u));
}
template <class U>
BOOST_CONTAINER_FORCEINLINE void priv_push_back(BOOST_FWD_REF(U) u)
{
this->emplace_back(boost::forward<U>(u));
}
template <class U>
BOOST_CONTAINER_FORCEINLINE iterator priv_insert(const_iterator pos, BOOST_FWD_REF(U) u)
{
return this->emplace(pos, boost::forward<U>(u));
}
// allocator_type wrappers
BOOST_CONTAINER_FORCEINLINE allocator_type& get_allocator_ref() BOOST_NOEXCEPT
{
return static_cast<allocator_type&>(m_);
}
BOOST_CONTAINER_FORCEINLINE const allocator_type& get_allocator_ref() const BOOST_NOEXCEPT
{
return static_cast<const allocator_type&>(m_);
}
pointer allocate(size_type capacity)
{
//First detect overflow on smaller stored_size_types
if (capacity > stored_size_type(-1)){
boost::container::throw_length_error("get_next_capacity, allocator's max size reached");
}
//(clamp_by_stored_size_type<size_type>)(prefer_in_recvd_out_size, stored_size_type());
#ifdef BOOST_CONTAINER_DEVECTOR_ALLOC_STATS
++m_.capacity_alloc_count;
#endif // BOOST_CONTAINER_DEVECTOR_ALLOC_STATS
return allocator_traits_type::allocate(get_allocator_ref(), capacity);
}
void destroy_elements(pointer begin, pointer end)
{
for (; begin != end; ++begin)
{
allocator_traits_type::destroy(get_allocator_ref(), begin);
}
}
void deallocate_buffer()
{
if (m_.buffer)
{
allocator_traits_type::deallocate(get_allocator_ref(), m_.buffer, m_.capacity);
}
}
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
template <typename... Args>
BOOST_CONTAINER_FORCEINLINE void alloc_construct(pointer dst, Args&&... args)
{
allocator_traits_type::construct(
get_allocator_ref(),
dst,
boost::forward<Args>(args)...
);
}
template <typename... Args>
void construct_n(pointer buffer, size_type n, Args&&... args)
{
detail::construction_guard<allocator_type> ctr_guard(buffer, get_allocator_ref());
guarded_construct_n(buffer, n, ctr_guard, boost::forward<Args>(args)...);
ctr_guard.release();
}
template <typename... Args>
void guarded_construct_n(pointer buffer, size_type n, detail::construction_guard<allocator_type>& ctr_guard, Args&&... args)
{
for (size_type i = 0; i < n; ++i) {
this->alloc_construct(buffer + i, boost::forward<Args>(args)...);
ctr_guard.extend();
}
}
#else //!defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
#define BOOST_CONTAINER_DEVECTOR_ALLOC_CONSTRUCT(N) \
BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \
BOOST_CONTAINER_FORCEINLINE void alloc_construct(pointer dst BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\
{\
allocator_traits_type::construct(\
get_allocator_ref(), dst BOOST_MOVE_I##N BOOST_MOVE_FWD##N );\
}\
\
BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \
void construct_n(pointer buffer, size_type n BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\
{\
detail::construction_guard<allocator_type> ctr_guard(buffer, get_allocator_ref());\
guarded_construct_n(buffer, n, ctr_guard BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
ctr_guard.release();\
}\
\
BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \
void guarded_construct_n(pointer buffer, size_type n, detail::construction_guard<allocator_type>& ctr_guard BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\
{\
for (size_type i = 0; i < n; ++i) {\
this->alloc_construct(buffer + i BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
ctr_guard.extend();\
}\
}
//
BOOST_MOVE_ITERATE_0TO9(BOOST_CONTAINER_DEVECTOR_ALLOC_CONSTRUCT)
#undef BOOST_CONTAINER_DEVECTOR_ALLOC_CONSTRUCT
#endif //!defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
BOOST_CONTAINER_FORCEINLINE size_type front_capacity() const
{
return m_.back_idx;
}
BOOST_CONTAINER_FORCEINLINE size_type back_capacity() const
{
return m_.capacity - m_.front_idx;
}
size_type calculate_new_capacity(size_type requested_capacity)
{
size_type max = allocator_traits_type::max_size(this->get_allocator_ref());
(clamp_by_stored_size_type)(max, stored_size_type());
const size_type remaining_additional_cap = max - size_type(m_.capacity);
const size_type min_additional_cap = requested_capacity - size_type(m_.capacity);
if ( remaining_additional_cap < min_additional_cap )
boost::container::throw_length_error("devector: get_next_capacity, max size exceeded");
return growth_factor_type()( size_type(m_.capacity), min_additional_cap, max);
}
void buffer_move_or_copy(pointer dst)
{
detail::construction_guard<allocator_type> guard(dst, get_allocator_ref());
buffer_move_or_copy(dst, guard);
guard.release();
}
void buffer_move_or_copy(pointer dst, detail::construction_guard<allocator_type>& guard)
{
opt_move_or_copy(begin(), end(), dst, guard);
destroy_elements(data(), data() + size());
deallocate_buffer();
}
void opt_move_or_copy(pointer begin, pointer end, pointer dst)
{
typedef typename dtl::if_c
< boost::move_detail::is_nothrow_copy_constructible<T>::value || boost::is_nothrow_move_constructible<T>::value
, detail::null_construction_guard
, detail::construction_guard<allocator_type>
>::type guard_t;
guard_t guard(dst, get_allocator_ref());
opt_move_or_copy(begin, end, dst, guard);
guard.release();
}
template <typename Guard>
void opt_move_or_copy(pointer begin, pointer end, pointer dst, Guard& guard)
{
// if trivial copy and default allocator, memcpy
boost::container::uninitialized_move_alloc(get_allocator_ref(), begin, end, dst);
guard.extend();
}
template <typename Iterator>
void opt_copy(Iterator begin, Iterator end, pointer dst)
{
typedef typename dtl::if_c
< boost::move_detail::is_nothrow_copy_constructible<T>::value
, detail::null_construction_guard
, detail::construction_guard<allocator_type>
>::type guard_t;
guard_t guard(dst, get_allocator_ref());
opt_copy(begin, end, dst, guard);
guard.release();
}
template <typename Iterator, typename Guard>
void opt_copy(Iterator begin, Iterator end, pointer dst, Guard& guard)
{
while (begin != end)
{
this->alloc_construct(dst++, *begin++);
guard.extend();
}
}
template <typename Guard>
void opt_copy(const_pointer begin, const_pointer end, pointer dst, Guard& guard)
{
// if trivial copy and default allocator, memcpy
boost::container::uninitialized_copy_alloc(get_allocator_ref(), begin, end, dst);
guard.extend();
}
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
template <typename... Args>
void resize_front_impl(size_type sz , Args&&... args)
{
if (sz > size())
{
const size_type n = sz - size();
if (sz <= front_capacity())
{
construct_n(m_.buffer + m_.front_idx - n, n, boost::forward<Args>(args)...);
m_.set_front_idx(m_.front_idx - n);
}
else
{
resize_front_slow_path(sz, n, boost::forward<Args>(args)...);
}
}
else {
while (this->size() > sz)
{
this->pop_front();
}
}
}
template <typename... Args>
void resize_front_slow_path(size_type sz, size_type n, Args&&... args)
{
const size_type new_capacity = calculate_new_capacity(sz + back_free_capacity());
pointer new_buffer = allocate(new_capacity);
allocation_guard new_buffer_guard(new_buffer, new_capacity, get_allocator_ref());
const size_type new_old_elem_index = new_capacity - size();
const size_type new_elem_index = new_old_elem_index - n;
detail::construction_guard<allocator_type> guard(new_buffer + new_elem_index, get_allocator_ref());
guarded_construct_n(new_buffer + new_elem_index, n, guard, boost::forward<Args>(args)...);
buffer_move_or_copy(new_buffer + new_old_elem_index, guard);
guard.release();
new_buffer_guard.release();
m_.buffer = new_buffer;
m_.set_capacity(new_capacity);
m_.set_back_idx(new_old_elem_index + m_.back_idx - m_.front_idx);
m_.set_front_idx(new_elem_index);
}
template <typename... Args>
void resize_back_impl(size_type sz, Args&&... args)
{
if (sz > size())
{
const size_type n = sz - size();
if (sz <= back_capacity())
{
construct_n(m_.buffer + m_.back_idx, n, boost::forward<Args>(args)...);
m_.set_back_idx(m_.back_idx + n);
}
else
{
resize_back_slow_path(sz, n, boost::forward<Args>(args)...);
}
}
else
{
while (size() > sz)
{
pop_back();
}
}
}
template <typename... Args>
void resize_back_slow_path(size_type sz, size_type n, Args&&... args)
{
const size_type new_capacity = calculate_new_capacity(sz + front_free_capacity());
pointer new_buffer = allocate(new_capacity);
allocation_guard new_buffer_guard(new_buffer, new_capacity, get_allocator_ref());
detail::construction_guard<allocator_type> guard(new_buffer + m_.back_idx, get_allocator_ref());
guarded_construct_n(new_buffer + m_.back_idx, n, guard, boost::forward<Args>(args)...);
buffer_move_or_copy(new_buffer + m_.front_idx);
guard.release();
new_buffer_guard.release();
m_.buffer = new_buffer;
m_.set_capacity(new_capacity);
m_.set_back_idx(m_.back_idx + n);
}
template <typename... Args>
iterator emplace_slow_path(size_type new_elem_index, Args&&... args)
{
pointer position = begin() + new_elem_index;
// prefer moving front to access memory forward if there are less elems to move
bool prefer_move_front = new_elem_index <= size()/2;
if (front_free_capacity() && (!back_free_capacity() || prefer_move_front))
{
BOOST_ASSERT(size() >= 1);
// move things closer to the front a bit
// avoid invalidating any reference in args later
T tmp(boost::forward<Args>(args)...);
// construct at front - 1 from front (no guard)
this->alloc_construct(begin() - 1, boost::move(*begin()));
// move front half left
boost::move(begin() + 1, position, begin());
--m_.front_idx;
// move assign new elem before pos
--position;
*position = boost::move(tmp);
return position;
}
else if (back_free_capacity()) {
BOOST_ASSERT(size() >= 1);
// move things closer to the end a bit
// avoid invalidating any reference in args later
T tmp(boost::forward<Args>(args)...);
// construct at back + 1 from back (no guard)
this->alloc_construct(end(), boost::move(back()));
// move back half right
boost::container::move_backward(position, end() - 1, end());
++m_.back_idx;
// move assign new elem to pos
*position = boost::move(tmp);
return position;
}
else
{
return emplace_reallocating_slow_path(prefer_move_front, new_elem_index, boost::forward<Args>(args)...);
}
}
template <typename... Args>
pointer emplace_reallocating_slow_path(bool make_front_free, size_type new_elem_index, Args&&... args)
{
// reallocate
size_type new_capacity = calculate_new_capacity(capacity() + 1);
pointer new_buffer = allocate(new_capacity);
// guard allocation
allocation_guard new_buffer_guard(new_buffer, new_capacity, get_allocator_ref());
size_type new_front_index = (make_front_free)
? new_capacity - back_free_capacity() - size() - 1
: m_.front_idx;
iterator new_begin = new_buffer + new_front_index;
iterator new_position = new_begin + new_elem_index;
iterator old_position = begin() + new_elem_index;
// construct new element (and guard it)
this->alloc_construct(new_position, boost::forward<Args>(args)...);
detail::construction_guard<allocator_type> second_half_guard(new_position, get_allocator_ref());
second_half_guard.extend();
// move front-pos (possibly guarded)
detail::construction_guard<allocator_type> first_half_guard(new_begin, get_allocator_ref());
opt_move_or_copy(begin(), old_position, new_begin, first_half_guard);
// move pos+1-end (possibly guarded)
opt_move_or_copy(old_position, end(), new_position + 1, second_half_guard);
// cleanup
destroy_elements(begin(), end());
deallocate_buffer();
// release alloc and other guards
second_half_guard.release();
first_half_guard.release();
new_buffer_guard.release();
// rebind members
m_.set_capacity(new_capacity);
m_.buffer = new_buffer;
m_.set_back_idx(new_front_index + size() + 1);
m_.set_front_idx(new_front_index);
return new_position;
}
#else //!defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
#define BOOST_CONTAINER_DEVECTOR_SLOW_PATH(N) \
BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \
void resize_front_impl(size_type sz BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\
{\
if (sz > size())\
{\
const size_type n = sz - size();\
if (sz <= front_capacity()){\
construct_n(m_.buffer + m_.front_idx - n, n BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
m_.set_front_idx(m_.front_idx - n);\
}\
else\
{\
resize_front_slow_path(sz, n BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
}\
}\
else {\
while (this->size() > sz)\
{\
this->pop_front();\
}\
}\
}\
\
BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \
void resize_front_slow_path(size_type sz, size_type n BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\
{\
const size_type new_capacity = calculate_new_capacity(sz + back_free_capacity());\
pointer new_buffer = allocate(new_capacity);\
allocation_guard new_buffer_guard(new_buffer, new_capacity, get_allocator_ref());\
\
const size_type new_old_elem_index = new_capacity - size();\
const size_type new_elem_index = new_old_elem_index - n;\
\
detail::construction_guard<allocator_type> guard(new_buffer + new_elem_index, get_allocator_ref());\
guarded_construct_n(new_buffer + new_elem_index, n, guard BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
\
buffer_move_or_copy(new_buffer + new_old_elem_index, guard);\
\
guard.release();\
new_buffer_guard.release();\
m_.buffer = new_buffer;\
m_.set_capacity(new_capacity);\
m_.set_back_idx(new_old_elem_index + m_.back_idx - m_.front_idx);\
m_.set_front_idx(new_elem_index);\
}\
\
BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \
void resize_back_impl(size_type sz BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\
{\
if (sz > size())\
{\
const size_type n = sz - size();\
\
if (sz <= back_capacity())\
{\
construct_n(m_.buffer + m_.back_idx, n BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
m_.set_back_idx(m_.back_idx + n);\
}\
else\
{\
resize_back_slow_path(sz, n BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
}\
}\
else\
{\
while (size() > sz)\
{\
pop_back();\
}\
}\
}\
\
BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \
void resize_back_slow_path(size_type sz, size_type n BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\
{\
const size_type new_capacity = calculate_new_capacity(sz + front_free_capacity());\
pointer new_buffer = allocate(new_capacity);\
allocation_guard new_buffer_guard(new_buffer, new_capacity, get_allocator_ref());\
\
detail::construction_guard<allocator_type> guard(new_buffer + m_.back_idx, get_allocator_ref());\
guarded_construct_n(new_buffer + m_.back_idx, n, guard BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
\
buffer_move_or_copy(new_buffer + m_.front_idx);\
\
guard.release();\
new_buffer_guard.release();\
\
m_.buffer = new_buffer;\
m_.set_capacity(new_capacity);\
m_.set_back_idx(m_.back_idx + n);\
}\
\
BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \
iterator emplace_slow_path(size_type new_elem_index BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\
{\
pointer position = begin() + new_elem_index;\
\
bool prefer_move_front = new_elem_index <= size()/2;\
\
if (front_free_capacity() && (!back_free_capacity() || prefer_move_front))\
{\
BOOST_ASSERT(size() >= 1);\
typename dtl::aligned_storage<sizeof(T), dtl::alignment_of<T>::value>::type v;\
T *vp = reinterpret_cast<T *>(v.data);\
allocator_traits_type::construct(get_stored_allocator(), vp BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
T &tmp = *vp;\
dtl::value_destructor<allocator_type> on_exit(get_stored_allocator(), tmp); (void)on_exit;\
\
this->alloc_construct(begin() - 1, boost::move(*begin()));\
boost::move(begin() + 1, position, begin());\
--m_.front_idx;\
--position;\
*position = boost::move(tmp);\
return position;\
}\
else if (back_free_capacity()) {\
BOOST_ASSERT(size() >= 1);\
typename dtl::aligned_storage<sizeof(T), dtl::alignment_of<T>::value>::type v;\
T *vp = reinterpret_cast<T *>(v.data);\
allocator_traits_type::construct(get_stored_allocator(), vp BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
T &tmp = *vp;\
dtl::value_destructor<allocator_type> on_exit(get_stored_allocator(), tmp); (void)on_exit;\
this->alloc_construct(end(), boost::move(back()));\
boost::container::move_backward(position, end() - 1, end());\
++m_.back_idx;\
*position = boost::move(tmp);\
return position;\
}\
else {\
return emplace_reallocating_slow_path(prefer_move_front, new_elem_index BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
}\
}\
\
BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \
pointer emplace_reallocating_slow_path(bool make_front_free, size_type new_elem_index BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\
{\
size_type new_capacity = calculate_new_capacity(capacity() + 1);\
pointer new_buffer = allocate(new_capacity);\
allocation_guard new_buffer_guard(new_buffer, new_capacity, get_allocator_ref());\
size_type new_front_index = (make_front_free)\
? new_capacity - back_free_capacity() - size() - 1\
: m_.front_idx;\
iterator new_begin = new_buffer + new_front_index;\
iterator new_position = new_begin + new_elem_index;\
iterator old_position = begin() + new_elem_index;\
this->alloc_construct(new_position BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
detail::construction_guard<allocator_type> second_half_guard(new_position, get_allocator_ref());\
second_half_guard.extend();\
detail::construction_guard<allocator_type> first_half_guard(new_begin, get_allocator_ref());\
opt_move_or_copy(begin(), old_position, new_begin, first_half_guard);\
opt_move_or_copy(old_position, end(), new_position + 1, second_half_guard);\
destroy_elements(begin(), end());\
deallocate_buffer();\
second_half_guard.release();\
first_half_guard.release();\
new_buffer_guard.release();\
m_.set_capacity(new_capacity);\
m_.buffer = new_buffer;\
m_.set_back_idx(new_front_index + size() + 1);\
m_.set_front_idx(new_front_index);\
return new_position;\
}\
//
BOOST_MOVE_ITERATE_0TO9(BOOST_CONTAINER_DEVECTOR_SLOW_PATH)
#undef BOOST_CONTAINER_DEVECTOR_SLOW_PATH
#endif //!defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
/*
void unsafe_uninitialized_grow_front(size_type n)
{
BOOST_ASSERT(n >= size());
size_type need = n - size();
if (need > front_free_capacity())
{
reallocate_at(n + back_free_capacity(), need);
}
m_.set_front_idx(m_.front_idx - need);
}
void unsafe_uninitialized_shrink_front(size_type n)
{
BOOST_ASSERT(n <= size());
size_type doesnt_need = size() - n;
m_.set_front_idx(m_.front_idx + doesnt_need);
}
void unsafe_uninitialized_grow_back(size_type n)
{
BOOST_ASSERT(n >= size());
size_type need = n - size();
if (need > back_free_capacity())
{
reallocate_at(n + front_free_capacity(), front_free_capacity());
}
m_.set_back_idx(m_.back_idx + need);
}
void unsafe_uninitialized_shrink_back(size_type n)
{
BOOST_ASSERT(n <= size());
size_type doesnt_need = size() - n;
m_.set_back_idx(m_.back_idx - doesnt_need);
}
*/
void reallocate_at(size_type new_capacity, size_type buffer_offset)
{
pointer new_buffer = allocate(new_capacity);
allocation_guard new_buffer_guard(new_buffer, new_capacity, get_allocator_ref());
buffer_move_or_copy(new_buffer + buffer_offset);
new_buffer_guard.release();
m_.buffer = new_buffer;
//Safe cast, allocate() will handle stored_size_type overflow
m_.set_capacity(new_capacity);
m_.set_back_idx(m_.back_idx - m_.front_idx + buffer_offset);
m_.set_front_idx(buffer_offset);
BOOST_ASSERT(invariants_ok());
}
template <typename ForwardIterator>
iterator insert_range(const_iterator position, ForwardIterator first, ForwardIterator last)
{
size_type n = boost::container::iterator_distance(first, last);
if (position == end() && back_free_capacity() >= n) {// fast path
iterator r(this->end());
boost::container::uninitialized_copy_alloc(get_allocator_ref(), first, last, this->raw_end());
m_.set_back_idx(m_.back_idx + n);
return r;
}
else if (position == begin() && front_free_capacity() >= n) { // secondary fast path
boost::container::uninitialized_copy_alloc(get_allocator_ref(), first, last, this->raw_begin() - n);
m_.set_front_idx(m_.front_idx - n);
return begin();
}
else {
return insert_range_slow_path(position, first, last);
}
}
template <typename ForwardIterator>
iterator insert_range_slow_path(const_iterator position, ForwardIterator first, ForwardIterator last)
{
size_type n = boost::container::iterator_distance(first, last);
size_type index = position - begin();
if (front_free_capacity() + back_free_capacity() >= n) {
// if we move enough, it can be done without reallocation
iterator middle = begin() + index;
n -= insert_range_slow_path_near_front(middle, first, n);
if (n) {
insert_range_slow_path_near_back(middle, first, n);
}
BOOST_ASSERT(first == last);
return begin() + index;
}
else {
const bool prefer_move_front = 2 * index <= size();
return insert_range_reallocating_slow_path(prefer_move_front, index, first, n);
}
}
template <typename Iterator>
size_type insert_range_slow_path_near_front(iterator position, Iterator& first, size_type n)
{
size_type n_front = dtl::min_value(front_free_capacity(), n);
iterator new_begin = begin() - n_front;
iterator ctr_pos = new_begin;
detail::construction_guard<allocator_type> ctr_guard(ctr_pos, get_allocator_ref());
while (ctr_pos != begin()) {
this->alloc_construct(ctr_pos++, *(first++));
ctr_guard.extend();
}
boost::movelib::rotate_gcd(new_begin, ctr_pos, position);
m_.set_front_idx(m_.front_idx - n_front);
ctr_guard.release();
BOOST_ASSERT(invariants_ok());
return n_front;
}
template <typename Iterator>
size_type insert_range_slow_path_near_back(iterator position, Iterator& first, size_type n)
{
const size_type n_back = dtl::min_value(back_free_capacity(), n);
iterator ctr_pos = end();
detail::construction_guard<allocator_type> ctr_guard(ctr_pos, get_allocator_ref());
for (size_type i = 0; i < n_back; ++i) {
this->alloc_construct(ctr_pos++, *first++);
ctr_guard.extend();
}
boost::movelib::rotate_gcd(position, end(), ctr_pos);
m_.set_back_idx(m_.back_idx + n_back);
ctr_guard.release();
BOOST_ASSERT(invariants_ok());
return n_back;
}
template <typename Iterator>
iterator insert_range_reallocating_slow_path
(bool make_front_free, size_type new_elem_index, Iterator elems, size_type n)
{
// reallocate
const size_type new_capacity = calculate_new_capacity(capacity() + n);
pointer new_buffer = allocate(new_capacity);
// guard allocation
allocation_guard new_buffer_guard(new_buffer, new_capacity, get_allocator_ref());
const size_type new_front_index = (make_front_free)
? new_capacity - back_free_capacity() - size() - n
: m_.front_idx;
const iterator new_begin = new_buffer + new_front_index;
const iterator new_position = new_begin + new_elem_index;
const iterator old_position = begin() + new_elem_index;
// construct new element (and guard it)
iterator second_half_position = new_position;
detail::construction_guard<allocator_type> second_half_guard(second_half_position, get_allocator_ref());
for (size_type i = 0; i < n; ++i) {
this->alloc_construct(second_half_position++, *(elems++));
second_half_guard.extend();
}
// move front-pos (possibly guarded)
detail::construction_guard<allocator_type> first_half_guard(new_begin, get_allocator_ref());
opt_move_or_copy(begin(), old_position, new_begin, first_half_guard);
// move pos+1-end (possibly guarded)
opt_move_or_copy(old_position, end(), second_half_position, second_half_guard);
// cleanup
destroy_elements(begin(), end());
deallocate_buffer();
// release alloc and other guards
second_half_guard.release();
first_half_guard.release();
new_buffer_guard.release();
// rebind members
m_.set_capacity(new_capacity);
m_.buffer = new_buffer;
m_.set_back_idx(new_front_index + size() + n);
m_.set_front_idx(new_front_index);
return new_position;
}
template <typename Iterator>
void construct_from_range(Iterator begin, Iterator end)
{
allocation_guard buffer_guard(m_.buffer, m_.capacity, get_allocator_ref());
opt_copy(begin, end, m_.buffer);
buffer_guard.release();
}
template <typename ForwardIterator>
void allocate_and_copy_range(ForwardIterator first, ForwardIterator last)
{
size_type n = boost::container::iterator_distance(first, last);
pointer new_buffer = n ? allocate(n) : pointer();
allocation_guard new_buffer_guard(new_buffer, n, get_allocator_ref());
opt_copy(first, last, new_buffer);
destroy_elements(begin(), end());
deallocate_buffer();
m_.set_capacity(n);
m_.buffer = new_buffer;
m_.front_idx = 0;
m_.set_back_idx(n);
new_buffer_guard.release();
}
static void swap_big_big(devector& a, devector& b) BOOST_NOEXCEPT
{
boost::adl_move_swap(a.m_.capacity, b.m_.capacity);
boost::adl_move_swap(a.m_.buffer, b.m_.buffer);
}
template <typename ForwardIterator>
void overwrite_buffer_impl(ForwardIterator first, ForwardIterator last, dtl::true_)
{
const size_type n = boost::container::iterator_distance(first, last);
BOOST_ASSERT(capacity() >= n);
boost::container::uninitialized_copy_alloc_n
( get_allocator_ref(), boost::movelib::iterator_to_raw_pointer(first)
, n, boost::movelib::iterator_to_raw_pointer(m_.buffer));
m_.front_idx = 0;
m_.set_back_idx(n);
}
template <typename InputIterator>
InputIterator overwrite_buffer_impl(InputIterator first, InputIterator last, dtl::false_)
{
pointer pos = m_.buffer;
detail::construction_guard<allocator_type> front_guard(pos, get_allocator_ref());
while (first != last && pos != begin()) {
this->alloc_construct(pos++, *first++);
front_guard.extend();
}
while (first != last && pos != end()) {
*pos++ = *first++;
}
detail::construction_guard<allocator_type> back_guard(pos, get_allocator_ref());
iterator capacity_end = m_.buffer + capacity();
while (first != last && pos != capacity_end) {
this->alloc_construct(pos++, *first++);
back_guard.extend();
}
pointer destroy_after = dtl::min_value(dtl::max_value(begin(), pos), end());
destroy_elements(destroy_after, end());
front_guard.release();
back_guard.release();
m_.front_idx = 0;
m_.set_back_idx(pos - begin());
return first;
}
template <typename ForwardIterator>
BOOST_CONTAINER_FORCEINLINE void overwrite_buffer(ForwardIterator first, ForwardIterator last)
{
this->overwrite_buffer_impl(first, last,
dtl::bool_<dtl::is_trivially_destructible<T>::value>());
}
bool invariants_ok()
{
return (!m_.capacity || m_.buffer)
&& m_.front_idx <= m_.back_idx
&& m_.back_idx <= m_.capacity;
}
struct impl : allocator_type
{
impl()
: allocator_type(), buffer(), front_idx(), back_idx(), capacity()
#ifdef BOOST_CONTAINER_DEVECTOR_ALLOC_STATS
, capacity_alloc_count()
#endif
{}
explicit impl(const allocator_type &a)
: allocator_type(a), buffer(), front_idx(), back_idx(), capacity()
#ifdef BOOST_CONTAINER_DEVECTOR_ALLOC_STATS
, capacity_alloc_count()
#endif
{}
impl(const allocator_type &a, pointer p, size_type f, size_type b, size_type c)
: allocator_type(a), buffer(p)
//static cast sizes, as the allocation function will take care of overflows
, front_idx(static_cast<stored_size_type>(f))
, back_idx(static_cast<stored_size_type>(b))
, capacity(static_cast<stored_size_type>(c))
#ifdef BOOST_CONTAINER_DEVECTOR_ALLOC_STATS
, capacity_alloc_count()
#endif
{}
impl(BOOST_RV_REF(allocator_type) a, pointer p, size_type f, size_type b, size_type c)
: allocator_type(boost::move(a)), buffer(p)
//static cast sizes, as the allocation function will take care of overflows
, front_idx(static_cast<stored_size_type>(f))
, back_idx(static_cast<stored_size_type>(b))
, capacity(static_cast<stored_size_type>(c))
#ifdef BOOST_CONTAINER_DEVECTOR_ALLOC_STATS
, capacity_alloc_count()
#endif
{}
void set_back_idx(size_type bi)
{ back_idx = static_cast<stored_size_type>(bi);}
void set_front_idx(size_type fi)
{ front_idx = static_cast<stored_size_type>(fi);}
void set_capacity(size_type c)
{ capacity = static_cast<stored_size_type>(c);}
pointer buffer;
stored_size_type front_idx;
stored_size_type back_idx;
stored_size_type capacity;
#ifdef BOOST_CONTAINER_DEVECTOR_ALLOC_STATS
size_type capacity_alloc_count;
#endif
} m_;
#ifdef BOOST_CONTAINER_DEVECTOR_ALLOC_STATS
public:
void reset_alloc_stats()
{
m_.capacity_alloc_count = 0;
}
size_type get_alloc_count() const
{
return m_.capacity_alloc_count;
}
#endif // ifdef BOOST_CONTAINER_DEVECTOR_ALLOC_STATS
#endif // ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
};
}} // namespace boost::container
#include <boost/container/detail/config_end.hpp>
#endif // BOOST_CONTAINER_DEVECTOR_HPP