Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

This is the documentation for an old version of Boost. Click here to view this page for the latest version.

boost/gil/image.hpp

//
// Copyright 2005-2007 Adobe Systems Incorporated
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
#ifndef BOOST_GIL_IMAGE_HPP
#define BOOST_GIL_IMAGE_HPP

#include <boost/gil/algorithm.hpp>
#include <boost/gil/image_view.hpp>
#include <boost/gil/metafunctions.hpp>
#include <boost/gil/detail/mp11.hpp>

#include <boost/assert.hpp>
#include <boost/core/exchange.hpp>

#include <cstddef>
#include <memory>
#include <utility>
#include <type_traits>

namespace boost { namespace gil {

////////////////////////////////////////////////////////////////////////////////////////
/// \ingroup ImageModel PixelBasedModel
/// \brief container interface over image view. Models ImageConcept, PixelBasedConcept
///
/// A 2D container whose elements are pixels. It is templated over the pixel type, a boolean
/// indicating whether it should be planar, and an optional allocator.
///
/// Note that its element type does not have to be a pixel. \p image can be instantiated with any Regular element,
/// in which case it models the weaker RandomAccess2DImageConcept and does not model PixelBasedConcept
///
/// When recreating an image of the same or smaller size the memory will be reused if possible.
///
////////////////////////////////////////////////////////////////////////////////////////

template< typename Pixel, bool IsPlanar = false, typename Alloc=std::allocator<unsigned char> >
class image
{
public:
#if defined(BOOST_NO_CXX11_ALLOCATOR)
    using allocator_type = typename Alloc::template rebind<unsigned char>::other;
#else
    using allocator_type = typename std::allocator_traits<Alloc>::template rebind_alloc<unsigned char>;
#endif
    using view_t = typename view_type_from_pixel<Pixel, IsPlanar>::type;
    using const_view_t = typename view_t::const_t;
    using point_t = typename view_t::point_t;
    using coord_t = typename view_t::coord_t;
    using value_type = typename view_t::value_type;
    using x_coord_t = coord_t;
    using y_coord_t = coord_t;

    const point_t&          dimensions()            const { return _view.dimensions(); }
    x_coord_t               width()                 const { return _view.width(); }
    y_coord_t               height()                const { return _view.height(); }

    explicit image(std::size_t alignment=0,
                   const Alloc alloc_in = Alloc()) :
        _memory(nullptr), _align_in_bytes(alignment), _alloc(alloc_in), _allocated_bytes( 0 ) {}

    // Create with dimensions and optional initial value and alignment
    image(const point_t& dimensions,
          std::size_t alignment=0,
          const Alloc alloc_in = Alloc()) : _memory(nullptr), _align_in_bytes(alignment), _alloc(alloc_in)
                                          , _allocated_bytes( 0 )
    {
        allocate_and_default_construct(dimensions);
    }

    image(x_coord_t width, y_coord_t height,
          std::size_t alignment=0,
          const Alloc alloc_in = Alloc()) : _memory(nullptr), _align_in_bytes(alignment), _alloc(alloc_in)
                                          , _allocated_bytes( 0 )
    {
        allocate_and_default_construct(point_t(width,height));
    }

    image(const point_t& dimensions,
          const Pixel& p_in,
          std::size_t alignment = 0,
          const Alloc alloc_in = Alloc())  : _memory(nullptr), _align_in_bytes(alignment), _alloc(alloc_in)
                                           , _allocated_bytes( 0 )
    {
        allocate_and_fill(dimensions, p_in);
    }

    image(x_coord_t width, y_coord_t height,
          const Pixel& p_in,
          std::size_t alignment = 0,
          const Alloc alloc_in = Alloc())  : _memory(nullptr), _align_in_bytes(alignment), _alloc(alloc_in)
                                           , _allocated_bytes ( 0 )
    {
        allocate_and_fill(point_t(width,height),p_in);
    }

    image(const image& img) : _memory(nullptr), _align_in_bytes(img._align_in_bytes), _alloc(img._alloc)
                            , _allocated_bytes( img._allocated_bytes )
    {
        allocate_and_copy(img.dimensions(),img._view);
    }

    template <typename P2, bool IP2, typename Alloc2>
    image(const image<P2,IP2,Alloc2>& img) : _memory(nullptr), _align_in_bytes(img._align_in_bytes), _alloc(img._alloc)
                                           , _allocated_bytes( img._allocated_bytes )
    {
       allocate_and_copy(img.dimensions(),img._view);
    }

    // TODO Optimization: use noexcept (requires _view to be nothrow copy constructible)
    image(image&& img) :
      _view(img._view),
      _memory(img._memory),
      _align_in_bytes(img._align_in_bytes),
      _alloc(std::move(img._alloc)),
      _allocated_bytes(img._allocated_bytes)
    {
        img._view = view_t();
        img._memory = nullptr;
        img._align_in_bytes = 0;
        img._allocated_bytes = 0;
    }

    image& operator=(const image& img)
    {
        if (dimensions() == img.dimensions())
            copy_pixels(img._view,_view);
        else
        {
            image tmp(img);
            swap(tmp);
        }
        return *this;
    }

    template <typename Img>
    image& operator=(const Img& img)
    {
        if (dimensions() == img.dimensions())
            copy_pixels(img._view,_view);
        else
        {
            image tmp(img);
            swap(tmp);
        }
        return *this;
    }

  private:
      using propagate_allocators = std::true_type;
      using no_propagate_allocators = std::false_type;

      template <class Alloc2>
      using choose_pocma = typename std::conditional<
          // TODO: Use std::allocator_traits<Allocator>::is_always_equal if available
          std::is_empty<Alloc2>::value,
          std::true_type,
          typename std::allocator_traits<Alloc2>::propagate_on_container_move_assignment::type
      >::type;

      static void exchange_memory(image& lhs, image& rhs)
      {
          lhs._memory = boost::exchange(rhs._memory, nullptr);
          lhs._align_in_bytes = boost::exchange(rhs._align_in_bytes, 0);
          lhs._allocated_bytes = boost::exchange(rhs._allocated_bytes, 0);
          lhs._view = boost::exchange(rhs._view, image::view_t{});
      };

      void move_assign(image& img, propagate_allocators) noexcept {
          // non-sticky allocator, can adopt the memory, fast
          destruct_pixels(_view);
          this->deallocate();
          this->_alloc = img._alloc;
          exchange_memory(*this, img);
      }

      void move_assign(image& img, no_propagate_allocators) {
          if (_alloc == img._alloc) {
              // allocator stuck to the rhs, but it's equivalent of ours, we can still adopt the memory
              destruct_pixels(_view);
              this->deallocate();
              exchange_memory(*this, img);
          } else {
              // cannot propagate the allocator and cannot adopt the memory
              if (img._memory)
              {
                  allocate_and_copy(img.dimensions(), img._view);
                  destruct_pixels(img._view);
                  img.deallocate();
                  img._view = image::view_t{};
              }
              else
              {
                  destruct_pixels(this->_view);
                  this->deallocate();
                  this->_view = view_t{};
              }
          }
      }

  public:
      // TODO: Use noexcept(noexcept(move_assign(img, choose_pocma<allocator_type>{})))
      // But https://gcc.gnu.org/bugzilla/show_bug.cgi?id=52869 prevents it (fixed in GCC > 9)
      image& operator=(image&& img) {
          if (this != std::addressof(img))
              // Use rebinded alloc to choose pocma
              move_assign(img, choose_pocma<allocator_type>{});

          return *this;
      }

    ~image()
    {
        destruct_pixels(_view);
        deallocate();
    }

    Alloc&       allocator() { return _alloc; }
    Alloc const& allocator() const { return _alloc; }

    void swap(image& img) // required by MutableContainerConcept
    {
        using std::swap;
        swap(_align_in_bytes,  img._align_in_bytes);
        swap(_memory,          img._memory);
        swap(_view,            img._view);
        swap(_alloc,           img._alloc);
        swap(_allocated_bytes, img._allocated_bytes );
    }

    /////////////////////
    // recreate
    /////////////////////

    // without Allocator
    void recreate(const point_t& dims, std::size_t alignment = 0)
    {
        if (dims == _view.dimensions() && _align_in_bytes == alignment)
            return;

        _align_in_bytes = alignment;

        if (_allocated_bytes >= total_allocated_size_in_bytes(dims))
        {
            destruct_pixels(_view);
            create_view(dims, std::integral_constant<bool, IsPlanar>());
            default_construct_pixels(_view);
        }
        else
        {
            image tmp(dims, alignment);
            swap(tmp);
        }
    }

    void recreate(x_coord_t width, y_coord_t height, std::size_t alignment = 0)
    {
        recreate(point_t(width, height), alignment);
    }

    void recreate(const point_t& dims, const Pixel& p_in, std::size_t alignment = 0)
    {
        if (dims == _view.dimensions() && _align_in_bytes == alignment)
            return;

        _align_in_bytes = alignment;

        if (_allocated_bytes >= total_allocated_size_in_bytes(dims))
        {
            destruct_pixels(_view);
            create_view(dims, typename std::integral_constant<bool, IsPlanar>());
            uninitialized_fill_pixels(_view, p_in);
        }
        else
        {
            image tmp(dims, p_in, alignment);
            swap(tmp);
        }
    }

    void recreate( x_coord_t width, y_coord_t height, const Pixel& p_in, std::size_t alignment = 0 )
    {
        recreate( point_t( width, height ), p_in, alignment );
    }

    // with Allocator
    void recreate(const point_t& dims, std::size_t alignment, const Alloc alloc_in)
    {
        if (dims == _view.dimensions() && _align_in_bytes == alignment && alloc_in == _alloc)
            return;

        _align_in_bytes = alignment;

        if (_allocated_bytes >= total_allocated_size_in_bytes(dims))
        {
            destruct_pixels(_view);
            create_view(dims, std::integral_constant<bool, IsPlanar>());
            default_construct_pixels(_view);
        }
        else
        {
            image tmp(dims, alignment, alloc_in);
            swap(tmp);
        }
    }

    void recreate(x_coord_t width, y_coord_t height, std::size_t alignment, const Alloc alloc_in)
    {
        recreate(point_t(width, height), alignment, alloc_in);
    }

    void recreate(const point_t& dims, const Pixel& p_in, std::size_t alignment, const Alloc alloc_in)
    {
        if (dims == _view.dimensions() && _align_in_bytes == alignment && alloc_in == _alloc)
            return;

        _align_in_bytes = alignment;

        if (_allocated_bytes >= total_allocated_size_in_bytes(dims))
        {
            destruct_pixels(_view);
            create_view(dims, std::integral_constant<bool, IsPlanar>());
            uninitialized_fill_pixels(_view, p_in);
        }
        else
        {
            image tmp(dims, p_in, alignment, alloc_in);
            swap(tmp);
        }
    }

    void recreate(x_coord_t width, y_coord_t height, const Pixel& p_in, std::size_t alignment, const Alloc alloc_in )
    {
        recreate(point_t(width, height), p_in, alignment, alloc_in);
    }

    view_t       _view;      // contains pointer to the pixels, the image size and ways to navigate pixels
    
    // for construction from other type
    template <typename P2, bool IP2, typename Alloc2> friend class image;
private:
    unsigned char* _memory;
    std::size_t    _align_in_bytes;
    allocator_type _alloc;

    std::size_t _allocated_bytes;

    void allocate_and_default_construct(point_t const& dimensions)
    {
        try
        {
            allocate_(dimensions, std::integral_constant<bool, IsPlanar>());
            default_construct_pixels(_view);
        }
        catch (...) { deallocate(); throw; }
    }

    void allocate_and_fill(const point_t& dimensions, Pixel const& p_in)
    {
        try
        {
            allocate_(dimensions, std::integral_constant<bool, IsPlanar>());
            uninitialized_fill_pixels(_view, p_in);
        }
        catch(...) { deallocate(); throw; }
    }

    template <typename View>
    void allocate_and_copy(const point_t& dimensions, View const& v)
    {
        try
        {
            allocate_(dimensions, std::integral_constant<bool, IsPlanar>());
            uninitialized_copy_pixels(v, _view);
        }
        catch(...) { deallocate(); throw; }
    }

    void deallocate()
    {
        if (_memory && _allocated_bytes > 0)
            _alloc.deallocate(_memory, _allocated_bytes);
    }

    std::size_t is_planar_impl(
        std::size_t const size_in_units,
        std::size_t const channels_in_image,
        std::true_type) const
    {
        return size_in_units * channels_in_image;
    }

    std::size_t is_planar_impl(
        std::size_t const size_in_units,
        std::size_t const,
        std::false_type) const
    {
        return size_in_units;
    }

    std::size_t total_allocated_size_in_bytes(point_t const& dimensions) const
    {
        using x_iterator = typename view_t::x_iterator;

        // when value_type is a non-pixel, like int or float, num_channels< ... > doesn't work.
        constexpr std::size_t _channels_in_image =
            std::conditional
            <
                is_pixel<value_type>::value,
                num_channels<view_t>,
                std::integral_constant<std::size_t, 1>
            >::type::value;

        std::size_t size_in_units = is_planar_impl(
            get_row_size_in_memunits(dimensions.x) * dimensions.y,
            _channels_in_image,
            std::integral_constant<bool, IsPlanar>());

        // return the size rounded up to the nearest byte
        return ( size_in_units + byte_to_memunit< x_iterator >::value - 1 )
            / byte_to_memunit<x_iterator>::value
            + ( _align_in_bytes > 0 ? _align_in_bytes - 1 : 0 ); // add extra padding in case we need to align the first image pixel
    }

    std::size_t get_row_size_in_memunits(x_coord_t width) const {   // number of units per row
        std::size_t size_in_memunits = width*memunit_step(typename view_t::x_iterator());
        if (_align_in_bytes>0) {
            std::size_t alignment_in_memunits=_align_in_bytes*byte_to_memunit<typename view_t::x_iterator>::value;
            return align(size_in_memunits, alignment_in_memunits);
        }
        return size_in_memunits;
    }

    void allocate_(point_t const& dimensions, std::false_type)
    {
        // if it throws and _memory!=0 the client must deallocate _memory
        _allocated_bytes = total_allocated_size_in_bytes(dimensions);
        _memory=_alloc.allocate( _allocated_bytes );

        unsigned char* tmp=(_align_in_bytes>0) ? (unsigned char*)align((std::size_t)_memory,_align_in_bytes) : _memory;
        _view=view_t(dimensions,typename view_t::locator(typename view_t::x_iterator(tmp), get_row_size_in_memunits(dimensions.x)));

        BOOST_ASSERT(_view.width() == dimensions.x);
        BOOST_ASSERT(_view.height() == dimensions.y);
    }

    void allocate_(point_t const& dimensions, std::true_type)
    {
        // if it throws and _memory!=0 the client must deallocate _memory
        std::size_t row_size=get_row_size_in_memunits(dimensions.x);
        std::size_t plane_size=row_size*dimensions.y;

        _allocated_bytes = total_allocated_size_in_bytes( dimensions );

        _memory = _alloc.allocate( _allocated_bytes );

        unsigned char* tmp=(_align_in_bytes>0) ? (unsigned char*)align((std::size_t)_memory,_align_in_bytes) : _memory;
        typename view_t::x_iterator first;
        for (std::size_t i = 0; i < num_channels<view_t>::value; ++i)
        {
            dynamic_at_c(first, i) = (typename channel_type<view_t>::type*)tmp;
            memunit_advance(dynamic_at_c(first, i), static_cast<std::ptrdiff_t>(plane_size * i));
        }
        _view=view_t(dimensions, typename view_t::locator(first, row_size));

        BOOST_ASSERT(_view.width() == dimensions.x);
        BOOST_ASSERT(_view.height() == dimensions.y);
    }

    void create_view(point_t const& dims, std::true_type) // is planar
    {
        std::size_t row_size=get_row_size_in_memunits(dims.x);
        std::size_t plane_size=row_size*dims.y;

        unsigned char* tmp = ( _align_in_bytes > 0 ) ? (unsigned char*) align( (std::size_t) _memory
                                                                             ,_align_in_bytes
                                                                             )
                                                     : _memory;
        typename view_t::x_iterator first;

        for (std::size_t i = 0; i < num_channels<view_t>::value; ++i)
        {
            dynamic_at_c(first, i) = (typename channel_type<view_t>::type*)tmp;
            memunit_advance(dynamic_at_c(first, i), static_cast<std::ptrdiff_t>(plane_size * i));
        }

        _view = view_t(dims, typename view_t::locator(first, row_size));

        BOOST_ASSERT(_view.width() == dims.x);
        BOOST_ASSERT(_view.height() == dims.y);
    }

    void create_view(point_t const& dims, std::false_type) // is planar
    {
        unsigned char* tmp = ( _align_in_bytes > 0 ) ? ( unsigned char* ) align( (std::size_t) _memory
                                                                               , _align_in_bytes
                                                                               )
                                                     : _memory;

        _view = view_t( dims
                      , typename view_t::locator( typename view_t::x_iterator( tmp )
                                                , get_row_size_in_memunits( dims.x )
                                                )
                      );

        BOOST_ASSERT(_view.width() == dims.x);
        BOOST_ASSERT(_view.height() == dims.y);
    }
};

template <typename Pixel, bool IsPlanar, typename Alloc>
void swap(image<Pixel, IsPlanar, Alloc>& im1,image<Pixel, IsPlanar, Alloc>& im2)
{
    im1.swap(im2);
}

template <typename Pixel1, bool IsPlanar1, typename Alloc1, typename Pixel2, bool IsPlanar2, typename Alloc2>
bool operator==(const image<Pixel1,IsPlanar1,Alloc1>& im1,const image<Pixel2,IsPlanar2,Alloc2>& im2)
{
    if ((void*)(&im1)==(void*)(&im2)) return true;
    if (const_view(im1).dimensions()!=const_view(im2).dimensions()) return false;
    return equal_pixels(const_view(im1),const_view(im2));
}
template <typename Pixel1, bool IsPlanar1, typename Alloc1, typename Pixel2, bool IsPlanar2, typename Alloc2>
bool operator!=(const image<Pixel1,IsPlanar1,Alloc1>& im1,const image<Pixel2,IsPlanar2,Alloc2>& im2) {return !(im1==im2);}

///@{
/// \name view, const_view
/// \brief Get an image view from an image

/// \ingroup ImageModel

/// \brief Returns the non-constant-pixel view of an image
template <typename Pixel, bool IsPlanar, typename Alloc> inline
const typename image<Pixel,IsPlanar,Alloc>::view_t& view(image<Pixel,IsPlanar,Alloc>& img) { return img._view; }

/// \brief Returns the constant-pixel view of an image
template <typename Pixel, bool IsPlanar, typename Alloc> inline
const typename image<Pixel,IsPlanar,Alloc>::const_view_t const_view(const image<Pixel,IsPlanar,Alloc>& img)
{
    return static_cast<const typename image<Pixel,IsPlanar,Alloc>::const_view_t>(img._view);
}
///@}

/////////////////////////////
//  PixelBasedConcept
/////////////////////////////

template <typename Pixel, bool IsPlanar, typename Alloc>
struct channel_type<image<Pixel, IsPlanar, Alloc>> : channel_type<Pixel> {};

template <typename Pixel, bool IsPlanar, typename Alloc>
struct color_space_type<image<Pixel, IsPlanar, Alloc>> : color_space_type<Pixel> {};

template <typename Pixel, bool IsPlanar, typename Alloc>
struct channel_mapping_type<image<Pixel, IsPlanar, Alloc>> : channel_mapping_type<Pixel> {};

template <typename Pixel, bool IsPlanar, typename Alloc>
struct is_planar<image<Pixel, IsPlanar, Alloc>> : std::integral_constant<bool, IsPlanar> {};

}}  // namespace boost::gil

#endif