boost/histogram/axis/regular.hpp
// Copyright 2015-2018 Hans Dembinski
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_HISTOGRAM_AXIS_REGULAR_HPP
#define BOOST_HISTOGRAM_AXIS_REGULAR_HPP
#include <boost/core/nvp.hpp>
#include <boost/histogram/axis/interval_view.hpp>
#include <boost/histogram/axis/iterator.hpp>
#include <boost/histogram/axis/metadata_base.hpp>
#include <boost/histogram/axis/option.hpp>
#include <boost/histogram/detail/convert_integer.hpp>
#include <boost/histogram/detail/relaxed_equal.hpp>
#include <boost/histogram/detail/replace_type.hpp>
#include <boost/histogram/fwd.hpp>
#include <boost/mp11/utility.hpp>
#include <boost/throw_exception.hpp>
#include <cassert>
#include <cmath>
#include <limits>
#include <stdexcept>
#include <string>
#include <type_traits>
#include <utility>
namespace boost {
namespace histogram {
namespace detail {
template <class T>
using get_scale_type_helper = typename T::value_type;
template <class T>
using get_scale_type = mp11::mp_eval_or<T, detail::get_scale_type_helper, T>;
struct one_unit {};
template <class T>
T operator*(T&& t, const one_unit&) {
return std::forward<T>(t);
}
template <class T>
T operator/(T&& t, const one_unit&) {
return std::forward<T>(t);
}
template <class T>
using get_unit_type_helper = typename T::unit_type;
template <class T>
using get_unit_type = mp11::mp_eval_or<one_unit, detail::get_unit_type_helper, T>;
template <class T, class R = get_scale_type<T>>
R get_scale(const T& t) {
return t / get_unit_type<T>();
}
} // namespace detail
namespace axis {
namespace transform {
/// Identity transform for equidistant bins.
struct id {
/// Pass-through.
template <class T>
static T forward(T&& x) noexcept {
return std::forward<T>(x);
}
/// Pass-through.
template <class T>
static T inverse(T&& x) noexcept {
return std::forward<T>(x);
}
template <class Archive>
void serialize(Archive&, unsigned /* version */) {}
};
/// Log transform for equidistant bins in log-space.
struct log {
/// Returns log(x) of external value x.
template <class T>
static T forward(T x) {
return std::log(x);
}
/// Returns exp(x) for internal value x.
template <class T>
static T inverse(T x) {
return std::exp(x);
}
template <class Archive>
void serialize(Archive&, unsigned /* version */) {}
};
/// Sqrt transform for equidistant bins in sqrt-space.
struct sqrt {
/// Returns sqrt(x) of external value x.
template <class T>
static T forward(T x) {
return std::sqrt(x);
}
/// Returns x^2 of internal value x.
template <class T>
static T inverse(T x) {
return x * x;
}
template <class Archive>
void serialize(Archive&, unsigned /* version */) {}
};
/// Pow transform for equidistant bins in pow-space.
struct pow {
double power = 1; /**< power index */
/// Make transform with index p.
explicit pow(double p) : power(p) {}
pow() = default;
/// Returns pow(x, power) of external value x.
template <class T>
auto forward(T x) const {
return std::pow(x, power);
}
/// Returns pow(x, 1/power) of external value x.
template <class T>
auto inverse(T x) const {
return std::pow(x, 1.0 / power);
}
bool operator==(const pow& o) const noexcept { return power == o.power; }
template <class Archive>
void serialize(Archive& ar, unsigned /* version */) {
ar& make_nvp("power", power);
}
};
} // namespace transform
#ifndef BOOST_HISTOGRAM_DOXYGEN_INVOKED
// Type envelope to mark value as step size
template <class T>
struct step_type {
T value;
};
#endif
/**
Helper function to mark argument as step size.
*/
template <class T>
step_type<T> step(T t) {
return step_type<T>{t};
}
/** Axis for equidistant intervals on the real line.
The most common binning strategy. Very fast. Binning is a O(1) operation.
If the axis has an overflow bin (the default), a value on the upper edge of the last
bin is put in the overflow bin. The axis range represents a semi-open interval.
If the overflow bin is deactivated, then a value on the upper edge of the last bin is
still counted towards the last bin. The axis range represents a closed interval. This
is the desired behavior for random numbers drawn from a bounded interval, which is
usually closed.
@tparam Value input value type, must be floating point.
@tparam Transform builtin or user-defined transform type.
@tparam MetaData type to store meta data.
@tparam Options see boost::histogram::axis::option.
*/
template <class Value, class Transform, class MetaData, class Options>
class regular : public iterator_mixin<regular<Value, Transform, MetaData, Options>>,
protected detail::replace_default<Transform, transform::id>,
public metadata_base_t<MetaData> {
// these must be private, so that they are not automatically inherited
using value_type = Value;
using transform_type = detail::replace_default<Transform, transform::id>;
using metadata_base = metadata_base_t<MetaData>;
using metadata_type = typename metadata_base::metadata_type;
using options_type =
detail::replace_default<Options, decltype(option::underflow | option::overflow)>;
static_assert(std::is_nothrow_move_constructible<transform_type>::value,
"transform must be no-throw move constructible");
static_assert(std::is_nothrow_move_assignable<transform_type>::value,
"transform must be no-throw move assignable");
using unit_type = detail::get_unit_type<value_type>;
using internal_value_type = detail::get_scale_type<value_type>;
static_assert(std::is_floating_point<internal_value_type>::value,
"regular axis requires floating point type");
static_assert(
(!options_type::test(option::circular) && !options_type::test(option::growth)) ||
(options_type::test(option::circular) ^ options_type::test(option::growth)),
"circular and growth options are mutually exclusive");
public:
constexpr regular() = default;
/** Construct n bins over real transformed range [start, stop).
@param trans transform instance to use.
@param n number of bins.
@param start low edge of first bin.
@param stop high edge of last bin.
@param meta description of the axis (optional).
@param options see boost::histogram::axis::option (optional).
*/
regular(transform_type trans, unsigned n, value_type start, value_type stop,
metadata_type meta = {}, options_type options = {})
: transform_type(std::move(trans))
, metadata_base(std::move(meta))
, size_(static_cast<index_type>(n))
, min_(this->forward(detail::get_scale(start)))
, delta_(this->forward(detail::get_scale(stop)) - min_) {
(void)options;
if (size() == 0) BOOST_THROW_EXCEPTION(std::invalid_argument("bins > 0 required"));
if (!std::isfinite(min_) || !std::isfinite(delta_))
BOOST_THROW_EXCEPTION(
std::invalid_argument("forward transform of start or stop invalid"));
if (delta_ == 0)
BOOST_THROW_EXCEPTION(std::invalid_argument("range of axis is zero"));
}
/** Construct n bins over real range [start, stop).
@param n number of bins.
@param start low edge of first bin.
@param stop high edge of last bin.
@param meta description of the axis (optional).
@param options see boost::histogram::axis::option (optional).
*/
regular(unsigned n, value_type start, value_type stop, metadata_type meta = {},
options_type options = {})
: regular({}, n, start, stop, std::move(meta), options) {}
/** Construct bins with the given step size over real transformed range
[start, stop).
@param trans transform instance to use.
@param step width of a single bin.
@param start low edge of first bin.
@param stop upper limit of high edge of last bin (see below).
@param meta description of the axis (optional).
@param options see boost::histogram::axis::option (optional).
The axis computes the number of bins as n = abs(stop - start) / step,
rounded down. This means that stop is an upper limit to the actual value
(start + n * step).
*/
template <class T>
regular(transform_type trans, step_type<T> step, value_type start, value_type stop,
metadata_type meta = {}, options_type options = {})
: regular(trans, static_cast<index_type>(std::abs(stop - start) / step.value),
start,
start + static_cast<index_type>(std::abs(stop - start) / step.value) *
step.value,
std::move(meta), options) {}
/** Construct bins with the given step size over real range [start, stop).
@param step width of a single bin.
@param start low edge of first bin.
@param stop upper limit of high edge of last bin (see below).
@param meta description of the axis (optional).
@param options see boost::histogram::axis::option (optional).
The axis computes the number of bins as n = abs(stop - start) / step,
rounded down. This means that stop is an upper limit to the actual value
(start + n * step).
*/
template <class T>
regular(step_type<T> step, value_type start, value_type stop, metadata_type meta = {},
options_type options = {})
: regular({}, step, start, stop, std::move(meta), options) {}
/// Constructor used by algorithm::reduce to shrink and rebin (not for users).
regular(const regular& src, index_type begin, index_type end, unsigned merge)
: regular(src.transform(), (end - begin) / merge, src.value(begin), src.value(end),
src.metadata()) {
assert((end - begin) % merge == 0);
if (options_type::test(option::circular) && !(begin == 0 && end == src.size()))
BOOST_THROW_EXCEPTION(std::invalid_argument("cannot shrink circular axis"));
}
/// Return instance of the transform type.
const transform_type& transform() const noexcept { return *this; }
/// Return index for value argument.
index_type index(value_type x) const noexcept {
// Runs in hot loop, please measure impact of changes
auto z = (this->forward(x / unit_type{}) - min_) / delta_;
if (options_type::test(option::circular)) {
if (std::isfinite(z)) {
z -= std::floor(z);
return static_cast<index_type>(z * size());
}
} else {
if (z < 1) {
if (z >= 0)
return static_cast<index_type>(z * size());
else
return -1;
}
// upper edge of last bin is inclusive if overflow bin is not present
if (!options_type::test(option::overflow) && z == 1) return size() - 1;
}
return size(); // also returned if x is NaN
}
/// Returns index and shift (if axis has grown) for the passed argument.
std::pair<index_type, index_type> update(value_type x) noexcept {
assert(options_type::test(option::growth));
const auto z = (this->forward(x / unit_type{}) - min_) / delta_;
if (z < 1) { // don't use i here!
if (z >= 0) {
const auto i = static_cast<axis::index_type>(z * size());
return {i, 0};
}
if (z != -std::numeric_limits<internal_value_type>::infinity()) {
const auto stop = min_ + delta_;
const auto i = static_cast<axis::index_type>(std::floor(z * size()));
min_ += i * (delta_ / size());
delta_ = stop - min_;
size_ -= i;
return {0, -i};
}
// z is -infinity
return {-1, 0};
}
// z either beyond range, infinite, or NaN
if (z < std::numeric_limits<internal_value_type>::infinity()) {
const auto i = static_cast<axis::index_type>(z * size());
const auto n = i - size() + 1;
delta_ /= size();
delta_ *= size() + n;
size_ += n;
return {i, -n};
}
// z either infinite or NaN
return {size(), 0};
}
/// Return value for fractional index argument.
value_type value(real_index_type i) const noexcept {
auto z = i / size();
if (!options_type::test(option::circular) && z < 0.0)
z = -std::numeric_limits<internal_value_type>::infinity() * delta_;
else if (options_type::test(option::circular) || z <= 1.0)
z = (1.0 - z) * min_ + z * (min_ + delta_);
else {
z = std::numeric_limits<internal_value_type>::infinity() * delta_;
}
return static_cast<value_type>(this->inverse(z) * unit_type());
}
/// Return bin for index argument.
decltype(auto) bin(index_type idx) const noexcept {
return interval_view<regular>(*this, idx);
}
/// Returns the number of bins, without over- or underflow.
index_type size() const noexcept { return size_; }
/// Returns the options.
static constexpr unsigned options() noexcept { return options_type::value; }
template <class V, class T, class M, class O>
bool operator==(const regular<V, T, M, O>& o) const noexcept {
return detail::relaxed_equal{}(transform(), o.transform()) && size() == o.size() &&
min_ == o.min_ && delta_ == o.delta_ &&
detail::relaxed_equal{}(this->metadata(), o.metadata());
}
template <class V, class T, class M, class O>
bool operator!=(const regular<V, T, M, O>& o) const noexcept {
return !operator==(o);
}
template <class Archive>
void serialize(Archive& ar, unsigned /* version */) {
ar& make_nvp("transform", static_cast<transform_type&>(*this));
ar& make_nvp("size", size_);
ar& make_nvp("meta", this->metadata());
ar& make_nvp("min", min_);
ar& make_nvp("delta", delta_);
}
private:
index_type size_{0};
internal_value_type min_{0}, delta_{1};
template <class V, class T, class M, class O>
friend class regular;
};
#if __cpp_deduction_guides >= 201606
template <class T>
regular(unsigned, T, T)
-> regular<detail::convert_integer<T, double>, transform::id, null_type>;
template <class T, class M>
regular(unsigned, T, T, M) -> regular<detail::convert_integer<T, double>, transform::id,
detail::replace_cstring<std::decay_t<M>>>;
template <class T, class M, unsigned B>
regular(unsigned, T, T, M, const option::bitset<B>&)
-> regular<detail::convert_integer<T, double>, transform::id,
detail::replace_cstring<std::decay_t<M>>, option::bitset<B>>;
template <class Tr, class T, class = detail::requires_transform<Tr, T>>
regular(Tr, unsigned, T, T) -> regular<detail::convert_integer<T, double>, Tr, null_type>;
template <class Tr, class T, class M>
regular(Tr, unsigned, T, T, M) -> regular<detail::convert_integer<T, double>, Tr,
detail::replace_cstring<std::decay_t<M>>>;
template <class Tr, class T, class M, unsigned B>
regular(Tr, unsigned, T, T, M, const option::bitset<B>&)
-> regular<detail::convert_integer<T, double>, Tr,
detail::replace_cstring<std::decay_t<M>>, option::bitset<B>>;
#endif
/// Regular axis with circular option already set.
template <class Value = double, class MetaData = use_default, class Options = use_default>
#ifndef BOOST_HISTOGRAM_DOXYGEN_INVOKED
using circular = regular<Value, transform::id, MetaData,
decltype(detail::replace_default<Options, option::overflow_t>{} |
option::circular)>;
#else
class circular;
#endif
} // namespace axis
} // namespace histogram
} // namespace boost
#endif