Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world.

This is the documentation for an old version of Boost. Click here to view this page for the latest version.

Level 3 BLAS

Functions

template<class M1, class T, class M2, class M3> M1 & boost::numeric::ublas::blas_3::tmm (M1 &m1, const T &t, const M2 &m2, const M3 &m3)
triangular matrix multiplication

template<class M1, class T, class M2, class C> M1 & boost::numeric::ublas::blas_3::tsm (M1 &m1, const T &t, const M2 &m2, C)
triangular solve m2 * x = t * m1 in place, m2 is a triangular matrix

template<class M1, class T1, class T2, class M2, class M3> M1 & boost::numeric::ublas::blas_3::gmm (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3)
general matrix multiplication

template<class M1, class T1, class T2, class M2> M1 & boost::numeric::ublas::blas_3::srk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2)
symmetric rank k update: m1 = t * m1 + t2 * (m2 * m2T)

template<class M1, class T1, class T2, class M2> M1 & boost::numeric::ublas::blas_3::hrk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2)
hermitian rank k update: m1 = t * m1 + t2 * (m2 * m2H)

template<class M1, class T1, class T2, class M2, class M3> M1 & boost::numeric::ublas::blas_3::sr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3)
generalized symmetric rank k update: m1 = t1 * m1 + t2 * (m2 * m3T) + t2 * (m3 * m2T)

template<class M1, class T1, class T2, class M2, class M3> M1 & boost::numeric::ublas::blas_3::hr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3)
generalized hermitian rank k update: m1 = t1 * m1 + t2 * (m2 * m3H) + (m3 * (t2 * m2)H)

template<class M, class E1, class E2> BOOST_UBLAS_INLINE M & boost::numeric::ublas::axpy_prod (const matrix_expression< E1 > &e1, const matrix_expression< E2 > &e2, M &m, bool init=true)
computes `M += A X` or `M = A X` in an optimized fashion.

template<class M, class E1, class E2> BOOST_UBLAS_INLINE M & boost::numeric::ublas::opb_prod (const matrix_expression< E1 > &e1, const matrix_expression< E2 > &e2, M &m, bool init=true)
computes `M += A X` or `M = A X` in an optimized fashion.

Function Documentation

 M1& tmm ( M1 & m1, const T & t, const M2 & m2, const M3 & m3 )
 triangular matrix multiplication
 M1& tsm ( M1 & m1, const T & t, const M2 & m2, C )
 triangular solve m2 * x = t * m1 in place, m2 is a triangular matrix
 M1& gmm ( M1 & m1, const T1 & t1, const T2 & t2, const M2 & m2, const M3 & m3 )
 general matrix multiplication
 M1& srk ( M1 & m1, const T1 & t1, const T2 & t2, const M2 & m2 )
 symmetric rank k update: m1 = t * m1 + t2 * (m2 * m2T) Todo:use opb_prod()
 M1& hrk ( M1 & m1, const T1 & t1, const T2 & t2, const M2 & m2 )
 hermitian rank k update: m1 = t * m1 + t2 * (m2 * m2H) Todo:use opb_prod()
 M1& sr2k ( M1 & m1, const T1 & t1, const T2 & t2, const M2 & m2, const M3 & m3 )
 generalized symmetric rank k update: m1 = t1 * m1 + t2 * (m2 * m3T) + t2 * (m3 * m2T) Todo:use opb_prod()
 M1& hr2k ( M1 & m1, const T1 & t1, const T2 & t2, const M2 & m2, const M3 & m3 )
 generalized hermitian rank k update: m1 = t1 * m1 + t2 * (m2 * m3H) + (m3 * (t2 * m2)H) Todo:use opb_prod()

Copyright (©) 2000-2004 Michael Stevens, Mathias Koch, Joerg Walter, Gunter Winkler
Use, modification and distribution are subject to the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt).