doc/html/boost_asio/example/cpp11/operations/composed_6.cpp
//
// composed_6.cpp
// ~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2023 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#include <boost/asio/deferred.hpp>
#include <boost/asio/executor_work_guard.hpp>
#include <boost/asio/io_context.hpp>
#include <boost/asio/ip/tcp.hpp>
#include <boost/asio/steady_timer.hpp>
#include <boost/asio/use_future.hpp>
#include <boost/asio/write.hpp>
#include <functional>
#include <iostream>
#include <memory>
#include <sstream>
#include <string>
#include <type_traits>
#include <utility>
using boost::asio::ip::tcp;
// NOTE: This example requires the new boost::asio::async_initiate function. For
// an example that works with the Networking TS style of completion tokens,
// please see an older version of asio.
//------------------------------------------------------------------------------
// This composed operation shows composition of multiple underlying operations.
// It automatically serialises a message, using its I/O streams insertion
// operator, before sending it N times on the socket. To do this, it must
// allocate a buffer for the encoded message and ensure this buffer's validity
// until all underlying async_write operation complete. A one second delay is
// inserted prior to each write operation, using a steady_timer.
// In addition to determining the mechanism by which an asynchronous operation
// delivers its result, a completion token also determines the time when the
// operation commences. For example, when the completion token is a simple
// callback the operation commences before the initiating function returns.
// However, if the completion token's delivery mechanism uses a future, we
// might instead want to defer initiation of the operation until the returned
// future object is waited upon.
//
// To enable this, when implementing an asynchronous operation we must package
// the initiation step as a function object.
struct async_write_message_initiation
{
// The initiation function object's call operator is passed the concrete
// completion handler produced by the completion token. This completion
// handler matches the asynchronous operation's completion handler signature,
// which in this example is:
//
// void(boost::system::error_code error)
//
// The initiation function object also receives any additional arguments
// required to start the operation. (Note: We could have instead passed these
// arguments as members in the initiaton function object. However, we should
// prefer to propagate them as function call arguments as this allows the
// completion token to optimise how they are passed. For example, a lazy
// future which defers initiation would need to make a decay-copy of the
// arguments, but when using a simple callback the arguments can be trivially
// forwarded straight through.)
template <typename CompletionHandler>
void operator()(CompletionHandler&& completion_handler, tcp::socket& socket,
std::unique_ptr<std::string> encoded_message, std::size_t repeat_count,
std::unique_ptr<boost::asio::steady_timer> delay_timer) const
{
// In this example, the composed operation's intermediate completion
// handler is implemented as a hand-crafted function object.
struct intermediate_completion_handler
{
// The intermediate completion handler holds a reference to the socket as
// it is used for multiple async_write operations, as well as for
// obtaining the I/O executor (see get_executor below).
tcp::socket& socket_;
// The allocated buffer for the encoded message. The std::unique_ptr
// smart pointer is move-only, and as a consequence our intermediate
// completion handler is also move-only.
std::unique_ptr<std::string> encoded_message_;
// The repeat count remaining.
std::size_t repeat_count_;
// A steady timer used for introducing a delay.
std::unique_ptr<boost::asio::steady_timer> delay_timer_;
// To manage the cycle between the multiple underlying asychronous
// operations, our intermediate completion handler is implemented as a
// state machine.
enum { starting, waiting, writing } state_;
// As our composed operation performs multiple underlying I/O operations,
// we should maintain a work object against the I/O executor. This tells
// the I/O executor that there is still more work to come in the future.
boost::asio::executor_work_guard<tcp::socket::executor_type> io_work_;
// The user-supplied completion handler, called once only on completion
// of the entire composed operation.
typename std::decay<CompletionHandler>::type handler_;
// By having a default value for the second argument, this function call
// operator matches the completion signature of both the async_write and
// steady_timer::async_wait operations.
void operator()(const boost::system::error_code& error, std::size_t = 0)
{
if (!error)
{
switch (state_)
{
case starting:
case writing:
if (repeat_count_ > 0)
{
--repeat_count_;
state_ = waiting;
delay_timer_->expires_after(std::chrono::seconds(1));
delay_timer_->async_wait(std::move(*this));
return; // Composed operation not yet complete.
}
break; // Composed operation complete, continue below.
case waiting:
state_ = writing;
boost::asio::async_write(socket_,
boost::asio::buffer(*encoded_message_), std::move(*this));
return; // Composed operation not yet complete.
}
}
// This point is reached only on completion of the entire composed
// operation.
// We no longer have any future work coming for the I/O executor.
io_work_.reset();
// Deallocate the encoded message before calling the user-supplied
// completion handler.
encoded_message_.reset();
// Call the user-supplied handler with the result of the operation.
handler_(error);
}
// It is essential to the correctness of our composed operation that we
// preserve the executor of the user-supplied completion handler. With a
// hand-crafted function object we can do this by defining a nested type
// executor_type and member function get_executor. These obtain the
// completion handler's associated executor, and default to the I/O
// executor - in this case the executor of the socket - if the completion
// handler does not have its own.
using executor_type = boost::asio::associated_executor_t<
typename std::decay<CompletionHandler>::type,
tcp::socket::executor_type>;
executor_type get_executor() const noexcept
{
return boost::asio::get_associated_executor(
handler_, socket_.get_executor());
}
// Although not necessary for correctness, we may also preserve the
// allocator of the user-supplied completion handler. This is achieved by
// defining a nested type allocator_type and member function
// get_allocator. These obtain the completion handler's associated
// allocator, and default to std::allocator<void> if the completion
// handler does not have its own.
using allocator_type = boost::asio::associated_allocator_t<
typename std::decay<CompletionHandler>::type,
std::allocator<void>>;
allocator_type get_allocator() const noexcept
{
return boost::asio::get_associated_allocator(
handler_, std::allocator<void>{});
}
};
// Initiate the underlying async_write operation using our intermediate
// completion handler.
auto encoded_message_buffer = boost::asio::buffer(*encoded_message);
boost::asio::async_write(socket, encoded_message_buffer,
intermediate_completion_handler{
socket, std::move(encoded_message),
repeat_count, std::move(delay_timer),
intermediate_completion_handler::starting,
boost::asio::make_work_guard(socket.get_executor()),
std::forward<CompletionHandler>(completion_handler)});
}
};
template <typename T, typename CompletionToken>
auto async_write_messages(tcp::socket& socket,
const T& message, std::size_t repeat_count,
CompletionToken&& token)
// The return type of the initiating function is deduced from the combination
// of:
//
// - the CompletionToken type,
// - the completion handler signature, and
// - the asynchronous operation's initiation function object.
//
// When the completion token is a simple callback, the return type is always
// void. In this example, when the completion token is boost::asio::yield_context
// (used for stackful coroutines) the return type would also be void, as
// there is no non-error argument to the completion handler. When the
// completion token is boost::asio::use_future it would be std::future<void>. When
// the completion token is boost::asio::deferred, the return type differs for each
// asynchronous operation.
//
// In C++11 we deduce the type from the call to boost::asio::async_initiate.
-> decltype(
boost::asio::async_initiate<
CompletionToken, void(boost::system::error_code)>(
async_write_message_initiation(), token, std::ref(socket),
std::declval<std::unique_ptr<std::string>>(), repeat_count,
std::declval<std::unique_ptr<boost::asio::steady_timer>>()))
{
// Encode the message and copy it into an allocated buffer. The buffer will
// be maintained for the lifetime of the composed asynchronous operation.
std::ostringstream os;
os << message;
std::unique_ptr<std::string> encoded_message(new std::string(os.str()));
// Create a steady_timer to be used for the delay between messages.
std::unique_ptr<boost::asio::steady_timer> delay_timer(
new boost::asio::steady_timer(socket.get_executor()));
// The boost::asio::async_initiate function takes:
//
// - our initiation function object,
// - the completion token,
// - the completion handler signature, and
// - any additional arguments we need to initiate the operation.
//
// It then asks the completion token to create a completion handler (i.e. a
// callback) with the specified signature, and invoke the initiation function
// object with this completion handler as well as the additional arguments.
// The return value of async_initiate is the result of our operation's
// initiating function.
//
// Note that we wrap non-const reference arguments in std::reference_wrapper
// to prevent incorrect decay-copies of these objects.
return boost::asio::async_initiate<
CompletionToken, void(boost::system::error_code)>(
async_write_message_initiation(), token, std::ref(socket),
std::move(encoded_message), repeat_count, std::move(delay_timer));
}
//------------------------------------------------------------------------------
void test_callback()
{
boost::asio::io_context io_context;
tcp::acceptor acceptor(io_context, {tcp::v4(), 55555});
tcp::socket socket = acceptor.accept();
// Test our asynchronous operation using a lambda as a callback.
async_write_messages(socket, "Testing callback\r\n", 5,
[](const boost::system::error_code& error)
{
if (!error)
{
std::cout << "Messages sent\n";
}
else
{
std::cout << "Error: " << error.message() << "\n";
}
});
io_context.run();
}
//------------------------------------------------------------------------------
void test_deferred()
{
boost::asio::io_context io_context;
tcp::acceptor acceptor(io_context, {tcp::v4(), 55555});
tcp::socket socket = acceptor.accept();
// Test our asynchronous operation using the deferred completion token. This
// token causes the operation's initiating function to package up the
// operation and its arguments to return a function object, which may then be
// used to launch the asynchronous operation.
auto op = async_write_messages(socket,
"Testing deferred\r\n", 5, boost::asio::deferred);
// Launch the operation using a lambda as a callback.
std::move(op)(
[](const boost::system::error_code& error)
{
if (!error)
{
std::cout << "Messages sent\n";
}
else
{
std::cout << "Error: " << error.message() << "\n";
}
});
io_context.run();
}
//------------------------------------------------------------------------------
void test_future()
{
boost::asio::io_context io_context;
tcp::acceptor acceptor(io_context, {tcp::v4(), 55555});
tcp::socket socket = acceptor.accept();
// Test our asynchronous operation using the use_future completion token.
// This token causes the operation's initiating function to return a future,
// which may be used to synchronously wait for the result of the operation.
std::future<void> f = async_write_messages(
socket, "Testing future\r\n", 5, boost::asio::use_future);
io_context.run();
try
{
// Get the result of the operation.
f.get();
std::cout << "Messages sent\n";
}
catch (const std::exception& e)
{
std::cout << "Error: " << e.what() << "\n";
}
}
//------------------------------------------------------------------------------
int main()
{
test_callback();
test_deferred();
test_future();
}