doc/html/boost_asio/example/cpp20/operations/composed_5.cpp
//
// composed_5.cpp
// ~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2023 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#include <boost/asio/deferred.hpp>
#include <boost/asio/io_context.hpp>
#include <boost/asio/ip/tcp.hpp>
#include <boost/asio/use_future.hpp>
#include <boost/asio/write.hpp>
#include <functional>
#include <iostream>
#include <memory>
#include <sstream>
#include <string>
#include <type_traits>
#include <utility>
using boost::asio::ip::tcp;
// NOTE: This example requires the new boost::asio::async_initiate function. For
// an example that works with the Networking TS style of completion tokens,
// please see an older version of asio.
//------------------------------------------------------------------------------
// This composed operation automatically serialises a message, using its I/O
// streams insertion operator, before sending it on the socket. To do this, it
// must allocate a buffer for the encoded message and ensure this buffer's
// validity until the underlying async_write operation completes.
template <typename T,
boost::asio::completion_token_for<void(boost::system::error_code)> CompletionToken>
auto async_write_message(tcp::socket& socket,
const T& message, CompletionToken&& token)
// The return type of the initiating function is deduced from the combination
// of:
//
// - the CompletionToken type,
// - the completion handler signature, and
// - the asynchronous operation's initiation function object.
//
// When the completion token is a simple callback, the return type is always
// void. In this example, when the completion token is boost::asio::yield_context
// (used for stackful coroutines) the return type would also be void, as
// there is no non-error argument to the completion handler. When the
// completion token is boost::asio::use_future it would be std::future<void>. When
// the completion token is boost::asio::deferred, the return type differs for each
// asynchronous operation.
//
// In C++20 we can omit the return type as it is automatically deduced from
// the return type of boost::asio::async_initiate.
{
// In addition to determining the mechanism by which an asynchronous
// operation delivers its result, a completion token also determines the time
// when the operation commences. For example, when the completion token is a
// simple callback the operation commences before the initiating function
// returns. However, if the completion token's delivery mechanism uses a
// future, we might instead want to defer initiation of the operation until
// the returned future object is waited upon.
//
// To enable this, when implementing an asynchronous operation we must
// package the initiation step as a function object. The initiation function
// object's call operator is passed the concrete completion handler produced
// by the completion token. This completion handler matches the asynchronous
// operation's completion handler signature, which in this example is:
//
// void(boost::system::error_code error)
//
// The initiation function object also receives any additional arguments
// required to start the operation. (Note: We could have instead passed these
// arguments in the lambda capture set. However, we should prefer to
// propagate them as function call arguments as this allows the completion
// token to optimise how they are passed. For example, a lazy future which
// defers initiation would need to make a decay-copy of the arguments, but
// when using a simple callback the arguments can be trivially forwarded
// straight through.)
auto initiation = [](
boost::asio::completion_handler_for<void(boost::system::error_code)>
auto&& completion_handler,
tcp::socket& socket,
std::unique_ptr<std::string> encoded_message)
{
// In this example, the composed operation's intermediate completion
// handler is implemented as a hand-crafted function object, rather than
// using a lambda or std::bind.
struct intermediate_completion_handler
{
// The intermediate completion handler holds a reference to the socket so
// that it can obtain the I/O executor (see get_executor below).
tcp::socket& socket_;
// The allocated buffer for the encoded message. The std::unique_ptr
// smart pointer is move-only, and as a consequence our intermediate
// completion handler is also move-only.
std::unique_ptr<std::string> encoded_message_;
// The user-supplied completion handler.
typename std::decay<decltype(completion_handler)>::type handler_;
// The function call operator matches the completion signature of the
// async_write operation.
void operator()(const boost::system::error_code& error, std::size_t /*n*/)
{
// Deallocate the encoded message before calling the user-supplied
// completion handler.
encoded_message_.reset();
// Call the user-supplied handler with the result of the operation.
// The arguments must match the completion signature of our composed
// operation.
handler_(error);
}
// It is essential to the correctness of our composed operation that we
// preserve the executor of the user-supplied completion handler. With a
// hand-crafted function object we can do this by defining a nested type
// executor_type and member function get_executor. These obtain the
// completion handler's associated executor, and default to the I/O
// executor - in this case the executor of the socket - if the completion
// handler does not have its own.
using executor_type = boost::asio::associated_executor_t<
typename std::decay<decltype(completion_handler)>::type,
tcp::socket::executor_type>;
executor_type get_executor() const noexcept
{
return boost::asio::get_associated_executor(
handler_, socket_.get_executor());
}
// Although not necessary for correctness, we may also preserve the
// allocator of the user-supplied completion handler. This is achieved by
// defining a nested type allocator_type and member function
// get_allocator. These obtain the completion handler's associated
// allocator, and default to std::allocator<void> if the completion
// handler does not have its own.
using allocator_type = boost::asio::associated_allocator_t<
typename std::decay<decltype(completion_handler)>::type,
std::allocator<void>>;
allocator_type get_allocator() const noexcept
{
return boost::asio::get_associated_allocator(
handler_, std::allocator<void>{});
}
};
// Initiate the underlying async_write operation using our intermediate
// completion handler.
auto encoded_message_buffer = boost::asio::buffer(*encoded_message);
boost::asio::async_write(socket, encoded_message_buffer,
intermediate_completion_handler{socket, std::move(encoded_message),
std::forward<decltype(completion_handler)>(completion_handler)});
};
// Encode the message and copy it into an allocated buffer. The buffer will
// be maintained for the lifetime of the asynchronous operation.
std::ostringstream os;
os << message;
std::unique_ptr<std::string> encoded_message(new std::string(os.str()));
// The boost::asio::async_initiate function takes:
//
// - our initiation function object,
// - the completion token,
// - the completion handler signature, and
// - any additional arguments we need to initiate the operation.
//
// It then asks the completion token to create a completion handler (i.e. a
// callback) with the specified signature, and invoke the initiation function
// object with this completion handler as well as the additional arguments.
// The return value of async_initiate is the result of our operation's
// initiating function.
//
// Note that we wrap non-const reference arguments in std::reference_wrapper
// to prevent incorrect decay-copies of these objects.
return boost::asio::async_initiate<
CompletionToken, void(boost::system::error_code)>(
initiation, token, std::ref(socket),
std::move(encoded_message));
}
//------------------------------------------------------------------------------
void test_callback()
{
boost::asio::io_context io_context;
tcp::acceptor acceptor(io_context, {tcp::v4(), 55555});
tcp::socket socket = acceptor.accept();
// Test our asynchronous operation using a lambda as a callback.
async_write_message(socket, 123456,
[](const boost::system::error_code& error)
{
if (!error)
{
std::cout << "Message sent\n";
}
else
{
std::cout << "Error: " << error.message() << "\n";
}
});
io_context.run();
}
//------------------------------------------------------------------------------
void test_deferred()
{
boost::asio::io_context io_context;
tcp::acceptor acceptor(io_context, {tcp::v4(), 55555});
tcp::socket socket = acceptor.accept();
// Test our asynchronous operation using the deferred completion token. This
// token causes the operation's initiating function to package up the
// operation with its arguments to return a function object, which may then be
// used to launch the asynchronous operation.
boost::asio::async_operation auto op = async_write_message(
socket, std::string("abcdef"), boost::asio::deferred);
// Launch the operation using a lambda as a callback.
std::move(op)(
[](const boost::system::error_code& error)
{
if (!error)
{
std::cout << "Message sent\n";
}
else
{
std::cout << "Error: " << error.message() << "\n";
}
});
io_context.run();
}
//------------------------------------------------------------------------------
void test_future()
{
boost::asio::io_context io_context;
tcp::acceptor acceptor(io_context, {tcp::v4(), 55555});
tcp::socket socket = acceptor.accept();
// Test our asynchronous operation using the use_future completion token.
// This token causes the operation's initiating function to return a future,
// which may be used to synchronously wait for the result of the operation.
std::future<void> f = async_write_message(
socket, 654.321, boost::asio::use_future);
io_context.run();
try
{
// Get the result of the operation.
f.get();
std::cout << "Message sent\n";
}
catch (const std::exception& e)
{
std::cout << "Exception: " << e.what() << "\n";
}
}
//------------------------------------------------------------------------------
int main()
{
test_callback();
test_deferred();
test_future();
}