boost/graph/two_graphs_common_spanning_trees.hpp
// Copyright (C) 2012, Michele Caini.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Two Graphs Common Spanning Trees Algorithm
// Based on academic article of Mint, Read and Tarjan
// Efficient Algorithm for Common Spanning Tree Problem
// Electron. Lett., 28 April 1983, Volume 19, Issue 9, p.346-347
#ifndef BOOST_GRAPH_TWO_GRAPHS_COMMON_SPANNING_TREES_HPP
#define BOOST_GRAPH_TWO_GRAPHS_COMMON_SPANNING_TREES_HPP
#include <boost/config.hpp>
#include <boost/bimap.hpp>
#include <boost/type_traits.hpp>
#include <boost/concept/requires.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/undirected_dfs.hpp>
#include <boost/graph/connected_components.hpp>
#include <boost/graph/filtered_graph.hpp>
#include <vector>
#include <stack>
#include <map>
namespace boost
{
namespace detail
{
template < typename TreeMap, typename PredMap, typename DistMap,
typename LowMap, typename Buffer >
struct bridges_visitor : public default_dfs_visitor
{
bridges_visitor(TreeMap tree, PredMap pred, DistMap dist, LowMap low,
Buffer& buffer)
: mTree(tree), mPred(pred), mDist(dist), mLow(low), mBuffer(buffer)
{
mNum = -1;
}
template < typename Vertex, typename Graph >
void initialize_vertex(const Vertex& u, const Graph& g)
{
put(mPred, u, u);
put(mDist, u, -1);
}
template < typename Vertex, typename Graph >
void discover_vertex(const Vertex& u, const Graph& g)
{
put(mDist, u, ++mNum);
put(mLow, u, get(mDist, u));
}
template < typename Edge, typename Graph >
void tree_edge(const Edge& e, const Graph& g)
{
put(mPred, target(e, g), source(e, g));
put(mTree, target(e, g), e);
}
template < typename Edge, typename Graph >
void back_edge(const Edge& e, const Graph& g)
{
put(mLow, source(e, g),
(std::min)(get(mLow, source(e, g)), get(mDist, target(e, g))));
}
template < typename Vertex, typename Graph >
void finish_vertex(const Vertex& u, const Graph& g)
{
Vertex parent = get(mPred, u);
if (get(mLow, u) > get(mDist, parent))
mBuffer.push(get(mTree, u));
put(mLow, parent, (std::min)(get(mLow, parent), get(mLow, u)));
}
TreeMap mTree;
PredMap mPred;
DistMap mDist;
LowMap mLow;
Buffer& mBuffer;
int mNum;
};
template < typename Buffer >
struct cycle_finder : public base_visitor< cycle_finder< Buffer > >
{
typedef on_back_edge event_filter;
cycle_finder() : mBuffer(0) {}
cycle_finder(Buffer* buffer) : mBuffer(buffer) {}
template < typename Edge, typename Graph >
void operator()(const Edge& e, const Graph& g)
{
if (mBuffer)
mBuffer->push(e);
}
Buffer* mBuffer;
};
template < typename DeletedMap > struct deleted_edge_status
{
deleted_edge_status() {}
deleted_edge_status(DeletedMap map) : mMap(map) {}
template < typename Edge > bool operator()(const Edge& e) const
{
return (!get(mMap, e));
}
DeletedMap mMap;
};
template < typename InLMap > struct inL_edge_status
{
inL_edge_status() {}
inL_edge_status(InLMap map) : mMap(map) {}
template < typename Edge > bool operator()(const Edge& e) const
{
return get(mMap, e);
}
InLMap mMap;
};
template < typename Graph, typename Func, typename Seq, typename Map >
void rec_two_graphs_common_spanning_trees(const Graph& iG,
bimap< bimaps::set_of< int >,
bimaps::set_of< typename graph_traits< Graph >::edge_descriptor > >
iG_bimap,
Map aiG_inL, Map diG, const Graph& vG,
bimap< bimaps::set_of< int >,
bimaps::set_of< typename graph_traits< Graph >::edge_descriptor > >
vG_bimap,
Map avG_inL, Map dvG, Func func, Seq inL)
{
typedef graph_traits< Graph > GraphTraits;
typedef typename GraphTraits::vertex_descriptor vertex_descriptor;
typedef typename GraphTraits::edge_descriptor edge_descriptor;
typedef typename Seq::size_type seq_size_type;
int edges = num_vertices(iG) - 1;
//
// [ Michele Caini ]
//
// Using the condition (edges != 0) leads to the accidental submission
// of
// sub-graphs ((V-1+1)-fake-tree, named here fat-tree).
// Remove this condition is a workaround for the problem of fat-trees.
// Please do not add that condition, even if it improves performance.
//
// Here is proposed the previous guard (that was wrong):
// for(seq_size_type i = 0; (i < inL.size()) && (edges != 0); ++i)
//
{
for (seq_size_type i = 0; i < inL.size(); ++i)
if (inL[i])
--edges;
if (edges < 0)
return;
}
bool is_tree = (edges == 0);
if (is_tree)
{
func(inL);
}
else
{
std::map< vertex_descriptor, default_color_type > vertex_color;
std::map< edge_descriptor, default_color_type > edge_color;
std::stack< edge_descriptor > iG_buf, vG_buf;
bool found = false;
seq_size_type m;
for (seq_size_type j = 0; j < inL.size() && !found; ++j)
{
if (!inL[j] && !get(diG, iG_bimap.left.at(j))
&& !get(dvG, vG_bimap.left.at(j)))
{
put(aiG_inL, iG_bimap.left.at(j), true);
put(avG_inL, vG_bimap.left.at(j), true);
undirected_dfs(
make_filtered_graph(iG,
detail::inL_edge_status< associative_property_map<
std::map< edge_descriptor, bool > > >(aiG_inL)),
make_dfs_visitor(detail::cycle_finder<
std::stack< edge_descriptor > >(&iG_buf)),
associative_property_map<
std::map< vertex_descriptor, default_color_type > >(
vertex_color),
associative_property_map<
std::map< edge_descriptor, default_color_type > >(
edge_color));
undirected_dfs(
make_filtered_graph(vG,
detail::inL_edge_status< associative_property_map<
std::map< edge_descriptor, bool > > >(avG_inL)),
make_dfs_visitor(detail::cycle_finder<
std::stack< edge_descriptor > >(&vG_buf)),
associative_property_map<
std::map< vertex_descriptor, default_color_type > >(
vertex_color),
associative_property_map<
std::map< edge_descriptor, default_color_type > >(
edge_color));
if (iG_buf.empty() && vG_buf.empty())
{
inL[j] = true;
found = true;
m = j;
}
else
{
while (!iG_buf.empty())
iG_buf.pop();
while (!vG_buf.empty())
vG_buf.pop();
put(aiG_inL, iG_bimap.left.at(j), false);
put(avG_inL, vG_bimap.left.at(j), false);
}
}
}
if (found)
{
std::stack< edge_descriptor > iG_buf_copy, vG_buf_copy;
for (seq_size_type j = 0; j < inL.size(); ++j)
{
if (!inL[j] && !get(diG, iG_bimap.left.at(j))
&& !get(dvG, vG_bimap.left.at(j)))
{
put(aiG_inL, iG_bimap.left.at(j), true);
put(avG_inL, vG_bimap.left.at(j), true);
undirected_dfs(
make_filtered_graph(iG,
detail::inL_edge_status<
associative_property_map<
std::map< edge_descriptor, bool > > >(
aiG_inL)),
make_dfs_visitor(detail::cycle_finder<
std::stack< edge_descriptor > >(&iG_buf)),
associative_property_map< std::map<
vertex_descriptor, default_color_type > >(
vertex_color),
associative_property_map< std::map< edge_descriptor,
default_color_type > >(edge_color));
undirected_dfs(
make_filtered_graph(vG,
detail::inL_edge_status<
associative_property_map<
std::map< edge_descriptor, bool > > >(
avG_inL)),
make_dfs_visitor(detail::cycle_finder<
std::stack< edge_descriptor > >(&vG_buf)),
associative_property_map< std::map<
vertex_descriptor, default_color_type > >(
vertex_color),
associative_property_map< std::map< edge_descriptor,
default_color_type > >(edge_color));
if (!iG_buf.empty() || !vG_buf.empty())
{
while (!iG_buf.empty())
iG_buf.pop();
while (!vG_buf.empty())
vG_buf.pop();
put(diG, iG_bimap.left.at(j), true);
put(dvG, vG_bimap.left.at(j), true);
iG_buf_copy.push(iG_bimap.left.at(j));
vG_buf_copy.push(vG_bimap.left.at(j));
}
put(aiG_inL, iG_bimap.left.at(j), false);
put(avG_inL, vG_bimap.left.at(j), false);
}
}
// REC
detail::rec_two_graphs_common_spanning_trees< Graph, Func, Seq,
Map >(iG, iG_bimap, aiG_inL, diG, vG, vG_bimap, aiG_inL,
dvG, func, inL);
while (!iG_buf_copy.empty())
{
put(diG, iG_buf_copy.top(), false);
put(dvG,
vG_bimap.left.at(iG_bimap.right.at(iG_buf_copy.top())),
false);
iG_buf_copy.pop();
}
while (!vG_buf_copy.empty())
{
put(dvG, vG_buf_copy.top(), false);
put(diG,
iG_bimap.left.at(vG_bimap.right.at(vG_buf_copy.top())),
false);
vG_buf_copy.pop();
}
inL[m] = false;
put(aiG_inL, iG_bimap.left.at(m), false);
put(avG_inL, vG_bimap.left.at(m), false);
put(diG, iG_bimap.left.at(m), true);
put(dvG, vG_bimap.left.at(m), true);
std::map< vertex_descriptor, edge_descriptor > tree_map;
std::map< vertex_descriptor, vertex_descriptor > pred_map;
std::map< vertex_descriptor, int > dist_map, low_map;
detail::bridges_visitor<
associative_property_map<
std::map< vertex_descriptor, edge_descriptor > >,
associative_property_map<
std::map< vertex_descriptor, vertex_descriptor > >,
associative_property_map<
std::map< vertex_descriptor, int > >,
associative_property_map<
std::map< vertex_descriptor, int > >,
std::stack< edge_descriptor > >
iG_vis(associative_property_map<
std::map< vertex_descriptor, edge_descriptor > >(
tree_map),
associative_property_map<
std::map< vertex_descriptor, vertex_descriptor > >(
pred_map),
associative_property_map<
std::map< vertex_descriptor, int > >(dist_map),
associative_property_map<
std::map< vertex_descriptor, int > >(low_map),
iG_buf),
vG_vis(associative_property_map<
std::map< vertex_descriptor, edge_descriptor > >(
tree_map),
associative_property_map<
std::map< vertex_descriptor, vertex_descriptor > >(
pred_map),
associative_property_map<
std::map< vertex_descriptor, int > >(dist_map),
associative_property_map<
std::map< vertex_descriptor, int > >(low_map),
vG_buf);
undirected_dfs(
make_filtered_graph(iG,
detail::deleted_edge_status< associative_property_map<
std::map< edge_descriptor, bool > > >(diG)),
iG_vis,
associative_property_map<
std::map< vertex_descriptor, default_color_type > >(
vertex_color),
associative_property_map<
std::map< edge_descriptor, default_color_type > >(
edge_color));
undirected_dfs(
make_filtered_graph(vG,
detail::deleted_edge_status< associative_property_map<
std::map< edge_descriptor, bool > > >(dvG)),
vG_vis,
associative_property_map<
std::map< vertex_descriptor, default_color_type > >(
vertex_color),
associative_property_map<
std::map< edge_descriptor, default_color_type > >(
edge_color));
found = false;
std::stack< edge_descriptor > iG_buf_tmp, vG_buf_tmp;
while (!iG_buf.empty() && !found)
{
if (!inL[iG_bimap.right.at(iG_buf.top())])
{
put(aiG_inL, iG_buf.top(), true);
put(avG_inL,
vG_bimap.left.at(iG_bimap.right.at(iG_buf.top())),
true);
undirected_dfs(
make_filtered_graph(iG,
detail::inL_edge_status<
associative_property_map<
std::map< edge_descriptor, bool > > >(
aiG_inL)),
make_dfs_visitor(detail::cycle_finder<
std::stack< edge_descriptor > >(&iG_buf_tmp)),
associative_property_map< std::map<
vertex_descriptor, default_color_type > >(
vertex_color),
associative_property_map< std::map< edge_descriptor,
default_color_type > >(edge_color));
undirected_dfs(
make_filtered_graph(vG,
detail::inL_edge_status<
associative_property_map<
std::map< edge_descriptor, bool > > >(
avG_inL)),
make_dfs_visitor(detail::cycle_finder<
std::stack< edge_descriptor > >(&vG_buf_tmp)),
associative_property_map< std::map<
vertex_descriptor, default_color_type > >(
vertex_color),
associative_property_map< std::map< edge_descriptor,
default_color_type > >(edge_color));
if (!iG_buf_tmp.empty() || !vG_buf_tmp.empty())
{
found = true;
}
else
{
while (!iG_buf_tmp.empty())
iG_buf_tmp.pop();
while (!vG_buf_tmp.empty())
vG_buf_tmp.pop();
iG_buf_copy.push(iG_buf.top());
}
put(aiG_inL, iG_buf.top(), false);
put(avG_inL,
vG_bimap.left.at(iG_bimap.right.at(iG_buf.top())),
false);
}
iG_buf.pop();
}
while (!vG_buf.empty() && !found)
{
if (!inL[vG_bimap.right.at(vG_buf.top())])
{
put(avG_inL, vG_buf.top(), true);
put(aiG_inL,
iG_bimap.left.at(vG_bimap.right.at(vG_buf.top())),
true);
undirected_dfs(
make_filtered_graph(iG,
detail::inL_edge_status<
associative_property_map<
std::map< edge_descriptor, bool > > >(
aiG_inL)),
make_dfs_visitor(detail::cycle_finder<
std::stack< edge_descriptor > >(&iG_buf_tmp)),
associative_property_map< std::map<
vertex_descriptor, default_color_type > >(
vertex_color),
associative_property_map< std::map< edge_descriptor,
default_color_type > >(edge_color));
undirected_dfs(
make_filtered_graph(vG,
detail::inL_edge_status<
associative_property_map<
std::map< edge_descriptor, bool > > >(
avG_inL)),
make_dfs_visitor(detail::cycle_finder<
std::stack< edge_descriptor > >(&vG_buf_tmp)),
associative_property_map< std::map<
vertex_descriptor, default_color_type > >(
vertex_color),
associative_property_map< std::map< edge_descriptor,
default_color_type > >(edge_color));
if (!iG_buf_tmp.empty() || !vG_buf_tmp.empty())
{
found = true;
}
else
{
while (!iG_buf_tmp.empty())
iG_buf_tmp.pop();
while (!vG_buf_tmp.empty())
vG_buf_tmp.pop();
vG_buf_copy.push(vG_buf.top());
}
put(avG_inL, vG_buf.top(), false);
put(aiG_inL,
iG_bimap.left.at(vG_bimap.right.at(vG_buf.top())),
false);
}
vG_buf.pop();
}
if (!found)
{
while (!iG_buf_copy.empty())
{
inL[iG_bimap.right.at(iG_buf_copy.top())] = true;
put(aiG_inL, iG_buf_copy.top(), true);
put(avG_inL,
vG_bimap.left.at(
iG_bimap.right.at(iG_buf_copy.top())),
true);
iG_buf.push(iG_buf_copy.top());
iG_buf_copy.pop();
}
while (!vG_buf_copy.empty())
{
inL[vG_bimap.right.at(vG_buf_copy.top())] = true;
put(avG_inL, vG_buf_copy.top(), true);
put(aiG_inL,
iG_bimap.left.at(
vG_bimap.right.at(vG_buf_copy.top())),
true);
vG_buf.push(vG_buf_copy.top());
vG_buf_copy.pop();
}
// REC
detail::rec_two_graphs_common_spanning_trees< Graph, Func,
Seq, Map >(iG, iG_bimap, aiG_inL, diG, vG, vG_bimap,
aiG_inL, dvG, func, inL);
while (!iG_buf.empty())
{
inL[iG_bimap.right.at(iG_buf.top())] = false;
put(aiG_inL, iG_buf.top(), false);
put(avG_inL,
vG_bimap.left.at(iG_bimap.right.at(iG_buf.top())),
false);
iG_buf.pop();
}
while (!vG_buf.empty())
{
inL[vG_bimap.right.at(vG_buf.top())] = false;
put(avG_inL, vG_buf.top(), false);
put(aiG_inL,
iG_bimap.left.at(vG_bimap.right.at(vG_buf.top())),
false);
vG_buf.pop();
}
}
put(diG, iG_bimap.left.at(m), false);
put(dvG, vG_bimap.left.at(m), false);
}
}
}
} // namespace detail
template < typename Coll, typename Seq > struct tree_collector
{
public:
BOOST_CONCEPT_ASSERT((BackInsertionSequence< Coll >));
BOOST_CONCEPT_ASSERT((RandomAccessContainer< Seq >));
BOOST_CONCEPT_ASSERT((CopyConstructible< Seq >));
typedef typename Coll::value_type coll_value_type;
typedef typename Seq::value_type seq_value_type;
BOOST_STATIC_ASSERT((is_same< coll_value_type, Seq >::value));
BOOST_STATIC_ASSERT((is_same< seq_value_type, bool >::value));
tree_collector(Coll& seqs) : mSeqs(seqs) {}
inline void operator()(Seq seq) { mSeqs.push_back(seq); }
private:
Coll& mSeqs;
};
template < typename Graph, typename Order, typename Func, typename Seq >
BOOST_CONCEPT_REQUIRES(
((RandomAccessContainer< Order >))((IncidenceGraphConcept< Graph >))(
(UnaryFunction< Func, void, Seq >))(
(Mutable_RandomAccessContainer< Seq >))(
(VertexAndEdgeListGraphConcept< Graph >)),
(void))
two_graphs_common_spanning_trees(const Graph& iG, Order iG_map, const Graph& vG,
Order vG_map, Func func, Seq inL)
{
typedef graph_traits< Graph > GraphTraits;
typedef typename GraphTraits::directed_category directed_category;
typedef typename GraphTraits::vertex_descriptor vertex_descriptor;
typedef typename GraphTraits::edge_descriptor edge_descriptor;
typedef typename GraphTraits::edges_size_type edges_size_type;
typedef typename GraphTraits::edge_iterator edge_iterator;
typedef typename Seq::value_type seq_value_type;
typedef typename Seq::size_type seq_size_type;
typedef typename Order::value_type order_value_type;
typedef typename Order::size_type order_size_type;
BOOST_STATIC_ASSERT((is_same< order_value_type, edge_descriptor >::value));
BOOST_CONCEPT_ASSERT((Convertible< order_size_type, edges_size_type >));
BOOST_CONCEPT_ASSERT((Convertible< seq_size_type, edges_size_type >));
BOOST_STATIC_ASSERT((is_same< seq_value_type, bool >::value));
BOOST_STATIC_ASSERT((is_same< directed_category, undirected_tag >::value));
if (num_vertices(iG) != num_vertices(vG))
return;
if (inL.size() != num_edges(iG) || inL.size() != num_edges(vG))
return;
if (iG_map.size() != num_edges(iG) || vG_map.size() != num_edges(vG))
return;
typedef bimaps::bimap< bimaps::set_of< int >,
bimaps::set_of< order_value_type > >
bimap_type;
typedef typename bimap_type::value_type bimap_value;
bimap_type iG_bimap, vG_bimap;
for (order_size_type i = 0; i < iG_map.size(); ++i)
iG_bimap.insert(bimap_value(i, iG_map[i]));
for (order_size_type i = 0; i < vG_map.size(); ++i)
vG_bimap.insert(bimap_value(i, vG_map[i]));
edge_iterator current, last;
boost::tuples::tie(current, last) = edges(iG);
for (; current != last; ++current)
if (iG_bimap.right.find(*current) == iG_bimap.right.end())
return;
boost::tuples::tie(current, last) = edges(vG);
for (; current != last; ++current)
if (vG_bimap.right.find(*current) == vG_bimap.right.end())
return;
std::stack< edge_descriptor > iG_buf, vG_buf;
std::map< vertex_descriptor, edge_descriptor > tree_map;
std::map< vertex_descriptor, vertex_descriptor > pred_map;
std::map< vertex_descriptor, int > dist_map, low_map;
detail::bridges_visitor< associative_property_map< std::map<
vertex_descriptor, edge_descriptor > >,
associative_property_map<
std::map< vertex_descriptor, vertex_descriptor > >,
associative_property_map< std::map< vertex_descriptor, int > >,
associative_property_map< std::map< vertex_descriptor, int > >,
std::stack< edge_descriptor > >
iG_vis(associative_property_map<
std::map< vertex_descriptor, edge_descriptor > >(tree_map),
associative_property_map<
std::map< vertex_descriptor, vertex_descriptor > >(pred_map),
associative_property_map< std::map< vertex_descriptor, int > >(
dist_map),
associative_property_map< std::map< vertex_descriptor, int > >(low_map),
iG_buf),
vG_vis(associative_property_map<
std::map< vertex_descriptor, edge_descriptor > >(tree_map),
associative_property_map<
std::map< vertex_descriptor, vertex_descriptor > >(pred_map),
associative_property_map< std::map< vertex_descriptor, int > >(
dist_map),
associative_property_map< std::map< vertex_descriptor, int > >(
low_map),
vG_buf);
std::map< vertex_descriptor, default_color_type > vertex_color;
std::map< edge_descriptor, default_color_type > edge_color;
undirected_dfs(iG, iG_vis,
associative_property_map<
std::map< vertex_descriptor, default_color_type > >(vertex_color),
associative_property_map<
std::map< edge_descriptor, default_color_type > >(edge_color));
undirected_dfs(vG, vG_vis,
associative_property_map<
std::map< vertex_descriptor, default_color_type > >(vertex_color),
associative_property_map<
std::map< edge_descriptor, default_color_type > >(edge_color));
while (!iG_buf.empty())
{
inL[iG_bimap.right.at(iG_buf.top())] = true;
iG_buf.pop();
}
while (!vG_buf.empty())
{
inL[vG_bimap.right.at(vG_buf.top())] = true;
vG_buf.pop();
}
std::map< edge_descriptor, bool > iG_inL, vG_inL;
associative_property_map< std::map< edge_descriptor, bool > > aiG_inL(
iG_inL),
avG_inL(vG_inL);
for (seq_size_type i = 0; i < inL.size(); ++i)
{
if (inL[i])
{
put(aiG_inL, iG_bimap.left.at(i), true);
put(avG_inL, vG_bimap.left.at(i), true);
}
else
{
put(aiG_inL, iG_bimap.left.at(i), false);
put(avG_inL, vG_bimap.left.at(i), false);
}
}
undirected_dfs(
make_filtered_graph(iG,
detail::inL_edge_status<
associative_property_map< std::map< edge_descriptor, bool > > >(
aiG_inL)),
make_dfs_visitor(
detail::cycle_finder< std::stack< edge_descriptor > >(&iG_buf)),
associative_property_map<
std::map< vertex_descriptor, default_color_type > >(vertex_color),
associative_property_map<
std::map< edge_descriptor, default_color_type > >(edge_color));
undirected_dfs(
make_filtered_graph(vG,
detail::inL_edge_status<
associative_property_map< std::map< edge_descriptor, bool > > >(
avG_inL)),
make_dfs_visitor(
detail::cycle_finder< std::stack< edge_descriptor > >(&vG_buf)),
associative_property_map<
std::map< vertex_descriptor, default_color_type > >(vertex_color),
associative_property_map<
std::map< edge_descriptor, default_color_type > >(edge_color));
if (iG_buf.empty() && vG_buf.empty())
{
std::map< edge_descriptor, bool > iG_deleted, vG_deleted;
associative_property_map< std::map< edge_descriptor, bool > > diG(
iG_deleted);
associative_property_map< std::map< edge_descriptor, bool > > dvG(
vG_deleted);
boost::tuples::tie(current, last) = edges(iG);
for (; current != last; ++current)
put(diG, *current, false);
boost::tuples::tie(current, last) = edges(vG);
for (; current != last; ++current)
put(dvG, *current, false);
for (seq_size_type j = 0; j < inL.size(); ++j)
{
if (!inL[j])
{
put(aiG_inL, iG_bimap.left.at(j), true);
put(avG_inL, vG_bimap.left.at(j), true);
undirected_dfs(
make_filtered_graph(iG,
detail::inL_edge_status< associative_property_map<
std::map< edge_descriptor, bool > > >(aiG_inL)),
make_dfs_visitor(
detail::cycle_finder< std::stack< edge_descriptor > >(
&iG_buf)),
associative_property_map<
std::map< vertex_descriptor, default_color_type > >(
vertex_color),
associative_property_map<
std::map< edge_descriptor, default_color_type > >(
edge_color));
undirected_dfs(
make_filtered_graph(vG,
detail::inL_edge_status< associative_property_map<
std::map< edge_descriptor, bool > > >(avG_inL)),
make_dfs_visitor(
detail::cycle_finder< std::stack< edge_descriptor > >(
&vG_buf)),
associative_property_map<
std::map< vertex_descriptor, default_color_type > >(
vertex_color),
associative_property_map<
std::map< edge_descriptor, default_color_type > >(
edge_color));
if (!iG_buf.empty() || !vG_buf.empty())
{
while (!iG_buf.empty())
iG_buf.pop();
while (!vG_buf.empty())
vG_buf.pop();
put(diG, iG_bimap.left.at(j), true);
put(dvG, vG_bimap.left.at(j), true);
}
put(aiG_inL, iG_bimap.left.at(j), false);
put(avG_inL, vG_bimap.left.at(j), false);
}
}
int cc = 0;
std::map< vertex_descriptor, int > com_map;
cc += connected_components(
make_filtered_graph(iG,
detail::deleted_edge_status< associative_property_map<
std::map< edge_descriptor, bool > > >(diG)),
associative_property_map< std::map< vertex_descriptor, int > >(
com_map));
cc += connected_components(
make_filtered_graph(vG,
detail::deleted_edge_status< associative_property_map<
std::map< edge_descriptor, bool > > >(dvG)),
associative_property_map< std::map< vertex_descriptor, int > >(
com_map));
if (cc != 2)
return;
// REC
detail::rec_two_graphs_common_spanning_trees< Graph, Func, Seq,
associative_property_map< std::map< edge_descriptor, bool > > >(
iG, iG_bimap, aiG_inL, diG, vG, vG_bimap, aiG_inL, dvG, func, inL);
}
}
template < typename Graph, typename Func, typename Seq >
BOOST_CONCEPT_REQUIRES(
((IncidenceGraphConcept< Graph >))((EdgeListGraphConcept< Graph >)), (void))
two_graphs_common_spanning_trees(
const Graph& iG, const Graph& vG, Func func, Seq inL)
{
typedef graph_traits< Graph > GraphTraits;
typedef typename GraphTraits::edge_descriptor edge_descriptor;
typedef typename GraphTraits::edge_iterator edge_iterator;
std::vector< edge_descriptor > iGO, vGO;
edge_iterator curr, last;
boost::tuples::tie(curr, last) = edges(iG);
for (; curr != last; ++curr)
iGO.push_back(*curr);
boost::tuples::tie(curr, last) = edges(vG);
for (; curr != last; ++curr)
vGO.push_back(*curr);
two_graphs_common_spanning_trees(iG, iGO, vG, vGO, func, inL);
}
} // namespace boost
#endif // BOOST_GRAPH_TWO_GRAPHS_COMMON_SPANNING_TREES_HPP