boost/numeric/ublas/expression_types.hpp
// Copyright (c) 2000-2013
// Joerg Walter, Mathias Koch. David Bellot
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_EXPRESSION_TYPE_
#define _BOOST_UBLAS_EXPRESSION_TYPE_
#include <boost/numeric/ublas/exception.hpp>
#include <boost/numeric/ublas/traits.hpp>
#include <boost/numeric/ublas/functional.hpp>
// Expression templates based on ideas of Todd Veldhuizen and Geoffrey Furnish
// Iterators based on ideas of Jeremy Siek
namespace boost { namespace numeric { namespace ublas {
/** \brief Base class for uBLAS statically derived expressions using the the Barton Nackman trick
*
* This is a NonAssignable class
* Directly implement nonassignable - simplifes debugging call trace!
*
* \tparam E an expression type
*/
template<class E>
class ublas_expression {
public:
typedef E expression_type;
/* E can be an incomplete type - to define the following we would need more template arguments
typedef typename E::type_category type_category;
typedef typename E::value_type value_type;
*/
protected:
ublas_expression () {}
~ublas_expression () {}
private:
const ublas_expression& operator= (const ublas_expression &);
};
/** \brief Base class for Scalar Expression models
*
* It does not model the Scalar Expression concept but all derived types should.
* The class defines a common base type and some common interface for all statically
* derived Scalar Expression classes.
*
* We implement the casts to the statically derived type.
*
* \tparam E an expression type
*/
template<class E>
class scalar_expression:
public ublas_expression<E> {
public:
typedef E expression_type;
typedef scalar_tag type_category;
BOOST_UBLAS_INLINE
const expression_type &operator () () const {
return *static_cast<const expression_type *> (this);
}
BOOST_UBLAS_INLINE
expression_type &operator () () {
return *static_cast<expression_type *> (this);
}
};
template<class T>
class scalar_reference:
public scalar_expression<scalar_reference<T> > {
typedef scalar_reference<T> self_type;
public:
typedef T value_type;
typedef const value_type &const_reference;
typedef typename boost::mpl::if_<boost::is_const<T>,
const_reference,
value_type &>::type reference;
typedef const self_type const_closure_type;
typedef const_closure_type closure_type;
// Construction and destruction
BOOST_UBLAS_INLINE
explicit scalar_reference (reference t):
t_ (t) {}
// Conversion
BOOST_UBLAS_INLINE
operator value_type () const {
return t_;
}
// Assignment
BOOST_UBLAS_INLINE
scalar_reference &operator = (const scalar_reference &s) {
t_ = s.t_;
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
scalar_reference &operator = (const scalar_expression<AE> &ae) {
t_ = ae;
return *this;
}
// Closure comparison
BOOST_UBLAS_INLINE
bool same_closure (const scalar_reference &sr) const {
return &t_ == &sr.t_;
}
private:
reference t_;
};
template<class T>
class scalar_value:
public scalar_expression<scalar_value<T> > {
typedef scalar_value<T> self_type;
public:
typedef T value_type;
typedef const value_type &const_reference;
typedef typename boost::mpl::if_<boost::is_const<T>,
const_reference,
value_type &>::type reference;
typedef const scalar_reference<const self_type> const_closure_type;
typedef scalar_reference<self_type> closure_type;
// Construction and destruction
BOOST_UBLAS_INLINE
scalar_value ():
t_ () {}
BOOST_UBLAS_INLINE
scalar_value (const value_type &t):
t_ (t) {}
BOOST_UBLAS_INLINE
operator value_type () const {
return t_;
}
// Assignment
BOOST_UBLAS_INLINE
scalar_value &operator = (const scalar_value &s) {
t_ = s.t_;
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
scalar_value &operator = (const scalar_expression<AE> &ae) {
t_ = ae;
return *this;
}
// Closure comparison
BOOST_UBLAS_INLINE
bool same_closure (const scalar_value &sv) const {
return this == &sv; // self closing on instances value
}
private:
value_type t_;
};
/** \brief Base class for Vector Expression models
*
* it does not model the Vector Expression concept but all derived types should.
* The class defines a common base type and some common interface for all
* statically derived Vector Expression classes.
* We implement the casts to the statically derived type.
*/
template<class E>
class vector_expression:
public ublas_expression<E> {
public:
static const unsigned complexity = 0;
typedef E expression_type;
typedef vector_tag type_category;
/* E can be an incomplete type - to define the following we would need more template arguments
typedef typename E::size_type size_type;
*/
BOOST_UBLAS_INLINE
const expression_type &operator () () const {
return *static_cast<const expression_type *> (this);
}
BOOST_UBLAS_INLINE
expression_type &operator () () {
return *static_cast<expression_type *> (this);
}
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
private:
// projection types
typedef vector_range<E> vector_range_type;
typedef vector_range<const E> const_vector_range_type;
typedef vector_slice<E> vector_slice_type;
typedef vector_slice<const E> const_vector_slice_type;
// vector_indirect_type will depend on the A template parameter
typedef basic_range<> default_range; // required to avoid range/slice name confusion
typedef basic_slice<> default_slice;
public:
BOOST_UBLAS_INLINE
const_vector_range_type operator () (const default_range &r) const {
return const_vector_range_type (operator () (), r);
}
BOOST_UBLAS_INLINE
vector_range_type operator () (const default_range &r) {
return vector_range_type (operator () (), r);
}
BOOST_UBLAS_INLINE
const_vector_slice_type operator () (const default_slice &s) const {
return const_vector_slice_type (operator () (), s);
}
BOOST_UBLAS_INLINE
vector_slice_type operator () (const default_slice &s) {
return vector_slice_type (operator () (), s);
}
template<class A>
BOOST_UBLAS_INLINE
const vector_indirect<const E, indirect_array<A> > operator () (const indirect_array<A> &ia) const {
return vector_indirect<const E, indirect_array<A> > (operator () (), ia);
}
template<class A>
BOOST_UBLAS_INLINE
vector_indirect<E, indirect_array<A> > operator () (const indirect_array<A> &ia) {
return vector_indirect<E, indirect_array<A> > (operator () (), ia);
}
BOOST_UBLAS_INLINE
const_vector_range_type project (const default_range &r) const {
return const_vector_range_type (operator () (), r);
}
BOOST_UBLAS_INLINE
vector_range_type project (const default_range &r) {
return vector_range_type (operator () (), r);
}
BOOST_UBLAS_INLINE
const_vector_slice_type project (const default_slice &s) const {
return const_vector_slice_type (operator () (), s);
}
BOOST_UBLAS_INLINE
vector_slice_type project (const default_slice &s) {
return vector_slice_type (operator () (), s);
}
template<class A>
BOOST_UBLAS_INLINE
const vector_indirect<const E, indirect_array<A> > project (const indirect_array<A> &ia) const {
return vector_indirect<const E, indirect_array<A> > (operator () (), ia);
}
template<class A>
BOOST_UBLAS_INLINE
vector_indirect<E, indirect_array<A> > project (const indirect_array<A> &ia) {
return vector_indirect<E, indirect_array<A> > (operator () (), ia);
}
#endif
};
/** \brief Base class for Vector container models
*
* it does not model the Vector concept but all derived types should.
* The class defines a common base type and some common interface for all
* statically derived Vector classes
* We implement the casts to the statically derived type.
*/
template<class C>
class vector_container:
public vector_expression<C> {
public:
static const unsigned complexity = 0;
typedef C container_type;
typedef vector_tag type_category;
BOOST_UBLAS_INLINE
const container_type &operator () () const {
return *static_cast<const container_type *> (this);
}
BOOST_UBLAS_INLINE
container_type &operator () () {
return *static_cast<container_type *> (this);
}
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using vector_expression<C>::operator ();
#endif
};
/** \brief Base class for Matrix Expression models
*
* it does not model the Matrix Expression concept but all derived types should.
* The class defines a common base type and some common interface for all
* statically derived Matrix Expression classes
* We implement the casts to the statically derived type.
*/
template<class E>
class matrix_expression:
public ublas_expression<E> {
private:
typedef matrix_expression<E> self_type;
public:
static const unsigned complexity = 0;
typedef E expression_type;
typedef matrix_tag type_category;
/* E can be an incomplete type - to define the following we would need more template arguments
typedef typename E::size_type size_type;
*/
BOOST_UBLAS_INLINE
const expression_type &operator () () const {
return *static_cast<const expression_type *> (this);
}
BOOST_UBLAS_INLINE
expression_type &operator () () {
return *static_cast<expression_type *> (this);
}
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
private:
// projection types
typedef vector_range<E> vector_range_type;
typedef const vector_range<const E> const_vector_range_type;
typedef vector_slice<E> vector_slice_type;
typedef const vector_slice<const E> const_vector_slice_type;
typedef matrix_row<E> matrix_row_type;
typedef const matrix_row<const E> const_matrix_row_type;
typedef matrix_column<E> matrix_column_type;
typedef const matrix_column<const E> const_matrix_column_type;
typedef matrix_range<E> matrix_range_type;
typedef const matrix_range<const E> const_matrix_range_type;
typedef matrix_slice<E> matrix_slice_type;
typedef const matrix_slice<const E> const_matrix_slice_type;
// matrix_indirect_type will depend on the A template parameter
typedef basic_range<> default_range; // required to avoid range/slice name confusion
typedef basic_slice<> default_slice;
public:
BOOST_UBLAS_INLINE
const_matrix_row_type operator [] (std::size_t i) const {
return const_matrix_row_type (operator () (), i);
}
BOOST_UBLAS_INLINE
matrix_row_type operator [] (std::size_t i) {
return matrix_row_type (operator () (), i);
}
BOOST_UBLAS_INLINE
const_matrix_row_type row (std::size_t i) const {
return const_matrix_row_type (operator () (), i);
}
BOOST_UBLAS_INLINE
matrix_row_type row (std::size_t i) {
return matrix_row_type (operator () (), i);
}
BOOST_UBLAS_INLINE
const_matrix_column_type column (std::size_t j) const {
return const_matrix_column_type (operator () (), j);
}
BOOST_UBLAS_INLINE
matrix_column_type column (std::size_t j) {
return matrix_column_type (operator () (), j);
}
BOOST_UBLAS_INLINE
const_matrix_range_type operator () (const default_range &r1, const default_range &r2) const {
return const_matrix_range_type (operator () (), r1, r2);
}
BOOST_UBLAS_INLINE
matrix_range_type operator () (const default_range &r1, const default_range &r2) {
return matrix_range_type (operator () (), r1, r2);
}
BOOST_UBLAS_INLINE
const_matrix_slice_type operator () (const default_slice &s1, const default_slice &s2) const {
return const_matrix_slice_type (operator () (), s1, s2);
}
BOOST_UBLAS_INLINE
matrix_slice_type operator () (const default_slice &s1, const default_slice &s2) {
return matrix_slice_type (operator () (), s1, s2);
}
template<class A>
BOOST_UBLAS_INLINE
const matrix_indirect<const E, indirect_array<A> > operator () (const indirect_array<A> &ia1, const indirect_array<A> &ia2) const {
return matrix_indirect<const E, indirect_array<A> > (operator () (), ia1, ia2);
}
template<class A>
BOOST_UBLAS_INLINE
matrix_indirect<E, indirect_array<A> > operator () (const indirect_array<A> &ia1, const indirect_array<A> &ia2) {
return matrix_indirect<E, indirect_array<A> > (operator () (), ia1, ia2);
}
BOOST_UBLAS_INLINE
const_matrix_range_type project (const default_range &r1, const default_range &r2) const {
return const_matrix_range_type (operator () (), r1, r2);
}
BOOST_UBLAS_INLINE
matrix_range_type project (const default_range &r1, const default_range &r2) {
return matrix_range_type (operator () (), r1, r2);
}
BOOST_UBLAS_INLINE
const_matrix_slice_type project (const default_slice &s1, const default_slice &s2) const {
return const_matrix_slice_type (operator () (), s1, s2);
}
BOOST_UBLAS_INLINE
matrix_slice_type project (const default_slice &s1, const default_slice &s2) {
return matrix_slice_type (operator () (), s1, s2);
}
template<class A>
BOOST_UBLAS_INLINE
const matrix_indirect<const E, indirect_array<A> > project (const indirect_array<A> &ia1, const indirect_array<A> &ia2) const {
return matrix_indirect<const E, indirect_array<A> > (operator () (), ia1, ia2);
}
template<class A>
BOOST_UBLAS_INLINE
matrix_indirect<E, indirect_array<A> > project (const indirect_array<A> &ia1, const indirect_array<A> &ia2) {
return matrix_indirect<E, indirect_array<A> > (operator () (), ia1, ia2);
}
#endif
};
#ifdef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
struct iterator1_tag {};
struct iterator2_tag {};
template<class I>
BOOST_UBLAS_INLINE
typename I::dual_iterator_type begin (const I &it, iterator1_tag) {
return it ().find2 (1, it.index1 (), 0);
}
template<class I>
BOOST_UBLAS_INLINE
typename I::dual_iterator_type end (const I &it, iterator1_tag) {
return it ().find2 (1, it.index1 (), it ().size2 ());
}
template<class I>
BOOST_UBLAS_INLINE
typename I::dual_reverse_iterator_type rbegin (const I &it, iterator1_tag) {
return typename I::dual_reverse_iterator_type (end (it, iterator1_tag ()));
}
template<class I>
BOOST_UBLAS_INLINE
typename I::dual_reverse_iterator_type rend (const I &it, iterator1_tag) {
return typename I::dual_reverse_iterator_type (begin (it, iterator1_tag ()));
}
template<class I>
BOOST_UBLAS_INLINE
typename I::dual_iterator_type begin (const I &it, iterator2_tag) {
return it ().find1 (1, 0, it.index2 ());
}
template<class I>
BOOST_UBLAS_INLINE
typename I::dual_iterator_type end (const I &it, iterator2_tag) {
return it ().find1 (1, it ().size1 (), it.index2 ());
}
template<class I>
BOOST_UBLAS_INLINE
typename I::dual_reverse_iterator_type rbegin (const I &it, iterator2_tag) {
return typename I::dual_reverse_iterator_type (end (it, iterator2_tag ()));
}
template<class I>
BOOST_UBLAS_INLINE
typename I::dual_reverse_iterator_type rend (const I &it, iterator2_tag) {
return typename I::dual_reverse_iterator_type (begin (it, iterator2_tag ()));
}
#endif
/** \brief Base class for Matrix container models
*
* it does not model the Matrix concept but all derived types should.
* The class defines a common base type and some common interface for all
* statically derived Matrix classes
* We implement the casts to the statically derived type.
*/
template<class C>
class matrix_container:
public matrix_expression<C> {
public:
static const unsigned complexity = 0;
typedef C container_type;
typedef matrix_tag type_category;
BOOST_UBLAS_INLINE
const container_type &operator () () const {
return *static_cast<const container_type *> (this);
}
BOOST_UBLAS_INLINE
container_type &operator () () {
return *static_cast<container_type *> (this);
}
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using matrix_expression<C>::operator ();
#endif
};
}}}
#endif