...one of the most highly
regarded and expertly designed C++ library projects in the
world.
— Herb Sutter and Andrei
Alexandrescu, C++
Coding Standards
#include <boost/math/distributions/empirical_cumulative_distribution_function.hpp> namespace boost{ namespace math{ template <class RandomAccessContainer> class empirical_cumulative_distribution_function { public: using Real = typename RandomAccessContainer::value_type; empirical_cumulative_distribution_function(RandomAccessContainer && v, bool sorted = false); auto operator()(Real t) const; RandomAccessContainer&& return_data(); }; }}
The empirical cumulative distribution function is a step function constructed from observed data which converges to the true cumulative distribution function in the limit of infinite data. This function is a basic building block of hypothesis testing workflows that attempt to answer the question "does my data come from a given distribution?" These tests require computing quadratures over some function of the empirical CDF and the supposed CDF to create a distance measurement, and hence it is occasionally useful to construct a continuous callable from the data.
An example usage is demonstrated below:
#include <vector> #include <random> #include <boost/math/distributions/empirical_cumulative_distribution_function.hpp> using boost::math::empirical_cumulative_distribution_function; std::random_device rd; std::mt19937 gen{rd()}; std::normal_distribution<double> dis(0, 1); size_t n = 128; std::vector<double> v(n); for (size_t i = 0; i < n; ++i) { v[i] = dis(gen); } auto ecdf = empirical_cumulative_distribution_function(std::move(v)); std::cout << "ecdf(0.0) = " << ecdf(0.0) << "\n"; // should print approximately 0.5 . . .
The empirical distribution function requires sorted data. By default, the constructor sorts it for you at O(Nlog(N)) cost.
If your data is already sorted, you can specify this and the constructor simply moves your data into the class:
std::sort(v.begin(), v.end()); auto ecdf = empirical_cumulative_distribution_function(std::move(v), /* already sorted = */ true);
If you want your data back after being done with the object, use
v = ecdf.return_data();
This operation invalidates ecdf
;
it can no longer be used.
The call operator complexity is O(log(N)), as it requires a call to std::upper_bound
.
Works with both integer and floating point types. If the input data consists of integers, the output of the call operator is a double. Requires C++17.
------------------------------------------------------ Benchmark Time ------------------------------------------------------ ECDFConstructorSorted<double>/8 4.52 ns ECDFConstructorSorted<double>/16 5.20 ns ECDFConstructorSorted<double>/32 5.22 ns ECDFConstructorSorted<double>/64 7.37 ns ECDFConstructorSorted<double>/128 7.16 ns ECDFConstructorSorted<double>/256 8.97 ns ECDFConstructorSorted<double>/512 8.44 ns ECDFConstructorSorted<double>/1024 9.07 ns ECDFConstructorSorted<double>/2048 11.4 ns ECDFConstructorSorted<double>/4096 12.6 ns ECDFConstructorSorted<double>/8192 11.4 ns ECDFConstructorSorted<double>/16384 16.0 ns ECDFConstructorSorted<double>/32768 17.0 ns ECDFConstructorSorted<double>/65536 19.5 ns ECDFConstructorSorted<double>/131072 15.8 ns ECDFConstructorSorted<double>/262144 17.9 ns ECDFConstructorSorted<double>/524288 26.7 ns ECDFConstructorSorted<double>/1048576 29.5 ns ECDFConstructorSorted<double>/2097152 31.8 ns ECDFConstructorSorted<double>/4194304 32.8 ns ECDFConstructorSorted<double>/8388608 35.4 ns ECDFConstructorSorted<double>/16777216 30.4 ns ECDFConstructorSorted<double>_BigO 1.27 lgN ECDFConstructorSorted<double>_RMS 20 % ECDFConstructorUnsorted<double>/8 155 ns ECDFConstructorUnsorted<double>/64 2095 ns ECDFConstructorUnsorted<double>/512 22212 ns ECDFConstructorUnsorted<double>/4096 220821 ns ECDFConstructorUnsorted<double>/32768 1996380 ns ECDFConstructorUnsorted<double>/262144 18916039 ns ECDFConstructorUnsorted<double>/2097152 194250013 ns ECDFConstructorUnsorted<double>/16777216 2281469424 ns ECDFConstructorUnsorted<double>_BigO 5.65 NlgN ECDFConstructorUnsorted<double>_RMS 6 % Shuffle<double>/8 82.4 ns Shuffle<double>/64 731 ns Shuffle<double>/512 5876 ns Shuffle<double>/4096 46864 ns Shuffle<double>/32768 385265 ns Shuffle<double>/262144 4663866 ns Shuffle<double>/2097152 54686332 ns Shuffle<double>/16777216 875309099 ns Shuffle<double>_BigO 2.16 NlgN Shuffle<double>_RMS 12 % ECDFEvaluation<double>/8 48.6 ns ECDFEvaluation<double>/64 61.3 ns ECDFEvaluation<double>/512 85.1 ns ECDFEvaluation<double>/4096 105 ns ECDFEvaluation<double>/32768 131 ns ECDFEvaluation<double>/262144 196 ns ECDFEvaluation<double>/2097152 391 ns ECDFEvaluation<double>/16777216 715 ns ECDFEvaluation<double>_BigO 18.19 lgN ECDFEvaluation<double>_RMS 60 %
The call to the unsorted constructor is in fact a little faster than indicated, as the data must be shuffled after being sorted in the benchmark. This is itself a fairly expensive operation.