...one of the most highly
regarded and expertly designed C++ library projects in the
world.
— Herb Sutter and Andrei
Alexandrescu, C++
Coding Standards
#include <boost/math/quadrature/ooura_fourier_integrals.hpp> namespace boost { namespace math { namespace quadrature { template<class Real> class ooura_fourier_sin { public: ooura_fourier_sin(const Real relative_error_tolerance = tools::root_epsilon<Real>(), size_t levels = sizeof(Real)); template<class F> std::pair<Real, Real> integrate(F const & f, Real omega); }; template<class Real> class ooura_fourier_cos { public: ooura_fourier_cos(const Real relative_error_tolerance = tools::root_epsilon<Real>(), size_t levels = sizeof(Real)) template<class F> std::pair<Real, Real> integrate(F const & f, Real omega); }; }}} // namespaces
Ooura's method for Fourier integrals computes
∫0∞ f(t)sin(ω t) dt
and
∫0∞ f(t)cos(ω t) dt
by a double exponentially decaying transformation. These integrals arise when computing continuous Fourier transform of odd and even functions, respectively. Oscillatory integrals are known to cause trouble for standard quadrature methods, so these routines are provided to cope with the most common oscillatory use case.
The basic usage is shown below:
ooura_fourier_sin<double>integrator = ooura_fourier_sin<double>(); // Use the default tolerance root_epsilon and eight levels for type double. auto f = [](double x) { // Simple reciprocal function for sinc. return 1 / x; }; double omega = 1; std::pair<double, double> result = integrator.integrate(f, omega); std::cout << "Integral = " << result.first << ", relative error estimate " << result.second << std::endl;
and compare with the expected value π/2 of the integral.
constexpr double expected = half_pi<double>(); std::cout << "pi/2 = " << expected << ", difference " << result.first - expected << std::endl;
The output is
integral = 1.5707963267948966, relative error estimate 1.2655356398390254e-11 pi/2 = 1.5707963267948966, difference 0
Note | |
---|---|
This integrator is more insistent about examining the error estimate, than (say) tanh-sinh, which just returns the value of the integral. |
With the macro BOOST_MATH_INSTRUMENT_OOURA defined, we can follow the progress:
ooura_fourier_sin with relative error goal 1.4901161193847656e-08 & 8 levels. h = 1.000000000000000, I_h = 1.571890732004545 = 0x1.92676e56d853500p+0, absolute error estimate = nan h = 0.500000000000000, I_h = 1.570793292491940 = 0x1.921f825c076f600p+0, absolute error estimate = 1.097439512605325e-03 h = 0.250000000000000, I_h = 1.570796326814776 = 0x1.921fb54458acf00p+0, absolute error estimate = 3.034322835882008e-06 h = 0.125000000000000, I_h = 1.570796326794897 = 0x1.921fb54442d1800p+0, absolute error estimate = 1.987898734512328e-11 Integral = 1.570796326794897e+00, relative error estimate 1.265535639839025e-11 pi/2 = 1.570796326794897e+00, difference 0.000000000000000e+00
Working code of this example is at ooura_fourier_integrals_example.cpp
A classical cosine transform is presented below:
auto integrator = ooura_fourier_cos<double>(); // Use the default tolerance root_epsilon and eight levels for type double. auto f = [](double x) { // More complex example function. return 1 / (x * x + 1); }; double omega = 1; auto [result, relative_error] = integrator.integrate(f, omega); std::cout << "Integral = " << result << ", relative error estimate " << relative_error << std::endl;
The value of this integral should be π/(2e) and can be shown :
constexpr double expected = half_pi<double>() / e<double>(); std::cout << "pi/(2e) = " << expected << ", difference " << result - expected << std::endl;
or with the macro BOOST_MATH_INSTRUMENT_OOURA defined, we can follow the progress:
ooura_fourier_cos with relative error goal 1.4901161193847656e-08 & 8 levels. epsilon for type = 2.2204460492503131e-16 h = 1.000000000000000, I_h = 0.588268622591776 = 0x1.2d318b7e96dbe00p-1, absolute error estimate = nan h = 0.500000000000000, I_h = 0.577871642184837 = 0x1.27decab8f07b200p-1, absolute error estimate = 1.039698040693926e-02 h = 0.250000000000000, I_h = 0.577863671186883 = 0x1.27ddbf42969be00p-1, absolute error estimate = 7.970997954576120e-06 h = 0.125000000000000, I_h = 0.577863674895461 = 0x1.27ddbf6271dc000p-1, absolute error estimate = 3.708578555361441e-09 Integral = 5.778636748954611e-01, relative error estimate 6.417739540441515e-09 pi/(2e) = 5.778636748954609e-01, difference 2.220446049250313e-16
Working code of this example is at ooura_fourier_integrals_consine_example.cpp
The integrator precomputes nodes and weights, and hence can be reused for many
different frequencies with good efficiency. The integrator is pimpl'd and hence
can be shared between threads without a memcpy
of the nodes and weights.
Ooura and Mori's paper identifies criteria for rapid convergence based on the
position of the poles of the integrand in the complex plane. If these poles
are too close to the real axis the convergence is slow. It is not trivial to
predict the convergence rate a priori, so if you are interested in figuring
out if the convergence is rapid, compile with -DBOOST_MATH_INSTRUMENT_OOURA
and some amount
of printing will give you a good idea of how well this method is performing.
It is simple to extend to higher precision using Boost.Multiprecision.
// Use the default parameters for tolerance root_epsilon and eight levels for a type of 8 bytes. //auto integrator = ooura_fourier_cos<Real>(); // Decide on a (tight) tolerance. const Real tol = 2 * std::numeric_limits<Real>::epsilon(); auto integrator = ooura_fourier_cos<Real>(tol, 8); // Loops or gets worse for more than 8. auto f = [](Real x) { // More complex example function. return 1 / (x * x + 1); }; double omega = 1; auto [result, relative_error] = integrator.integrate(f, omega);
std::cout << "Integral = " << result << ", relative error estimate " << relative_error << std::endl; const Real expected = half_pi<Real>() / e<Real>(); // Expect integral = 1/(2e) std::cout << "pi/(2e) = " << expected << ", difference " << result - expected << std::endl;
with output:
Integral = 0.5778636748954608589550465916563501587, relative error estimate 4.609814684522163895264277312610830278e-17 pi/(2e) = 0.5778636748954608659545328919193707407, difference -6.999486300263020581921171645255733758e-18
And with diagnostics on:
ooura_fourier_cos with relative error goal 3.851859888774471706111955885169854637e-34 & 15 levels. epsilon for type = 1.925929944387235853055977942584927319e-34 h = 1.000000000000000000000000000000000, I_h = 0.588268622591776615359568690603776 = 0.5882686225917766153595686906037760, absolute error estimate = nan h = 0.500000000000000000000000000000000, I_h = 0.577871642184837461311756940493259 = 0.5778716421848374613117569404932595, absolute error estimate = 1.039698040693915404781175011051656e-02 h = 0.250000000000000000000000000000000, I_h = 0.577863671186882539559996800783122 = 0.5778636711868825395599968007831220, absolute error estimate = 7.970997954921751760139710137450075e-06 h = 0.125000000000000000000000000000000, I_h = 0.577863674895460885593491133506723 = 0.5778636748954608855934911335067232, absolute error estimate = 3.708578346033494332723601147051768e-09 h = 0.062500000000000000000000000000000, I_h = 0.577863674895460858955046591656350 = 0.5778636748954608589550465916563502, absolute error estimate = 2.663844454185037302771663314961535e-17 h = 0.031250000000000000000000000000000, I_h = 0.577863674895460858955046591656348 = 0.5778636748954608589550465916563484, absolute error estimate = 1.733336949948512267750380148326435e-33 h = 0.015625000000000000000000000000000, I_h = 0.577863674895460858955046591656348 = 0.5778636748954608589550465916563479, absolute error estimate = 4.814824860968089632639944856462318e-34 h = 0.007812500000000000000000000000000, I_h = 0.577863674895460858955046591656347 = 0.5778636748954608589550465916563473, absolute error estimate = 6.740754805355325485695922799047246e-34 h = 0.003906250000000000000000000000000, I_h = 0.577863674895460858955046591656347 = 0.5778636748954608589550465916563475, absolute error estimate = 1.925929944387235853055977942584927e-34 Integral = 5.778636748954608589550465916563475e-01, relative error estimate 3.332844800697411177051445985473052e-34 pi/(2e) = 5.778636748954608589550465916563481e-01, difference -6.740754805355325485695922799047246e-34
Working code of this example is at ooura_fourier_integrals_multiprecision_example.cpp
For more examples of other functions and tests, see the full test suite at ooura_fourier_integral_test.cpp.
Ngyen and Nuyens make use of Boost.Multiprecision in their extension to multiple dimensions, showing relative errors reducing to ≅ 10-2000!
This implementation is base on Ooura's 1999 paper rather than the later 2005 paper. It does not preclude a second future implementation based on the later work.
Some of the features of the Ooura's 2005 paper that were less appealing were: