boost/asio/detail/reactive_socket_service_base.hpp
//
// detail/reactive_socket_service_base.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_BASE_HPP
#define BOOST_ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_BASE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/config.hpp>
#if !defined(BOOST_ASIO_HAS_IOCP) \
&& !defined(BOOST_ASIO_WINDOWS_RUNTIME) \
&& !defined(BOOST_ASIO_HAS_IO_URING_AS_DEFAULT)
#include <boost/asio/associated_cancellation_slot.hpp>
#include <boost/asio/buffer.hpp>
#include <boost/asio/cancellation_type.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/execution_context.hpp>
#include <boost/asio/socket_base.hpp>
#include <boost/asio/detail/buffer_sequence_adapter.hpp>
#include <boost/asio/detail/memory.hpp>
#include <boost/asio/detail/reactive_null_buffers_op.hpp>
#include <boost/asio/detail/reactive_socket_recv_op.hpp>
#include <boost/asio/detail/reactive_socket_recvmsg_op.hpp>
#include <boost/asio/detail/reactive_socket_send_op.hpp>
#include <boost/asio/detail/reactive_wait_op.hpp>
#include <boost/asio/detail/reactor.hpp>
#include <boost/asio/detail/reactor_op.hpp>
#include <boost/asio/detail/socket_holder.hpp>
#include <boost/asio/detail/socket_ops.hpp>
#include <boost/asio/detail/socket_types.hpp>
#include <boost/asio/detail/push_options.hpp>
namespace boost {
namespace asio {
namespace detail {
class reactive_socket_service_base
{
public:
// The native type of a socket.
typedef socket_type native_handle_type;
// The implementation type of the socket.
struct base_implementation_type
{
// The native socket representation.
socket_type socket_;
// The current state of the socket.
socket_ops::state_type state_;
// Per-descriptor data used by the reactor.
reactor::per_descriptor_data reactor_data_;
};
// Constructor.
BOOST_ASIO_DECL reactive_socket_service_base(execution_context& context);
// Destroy all user-defined handler objects owned by the service.
BOOST_ASIO_DECL void base_shutdown();
// Construct a new socket implementation.
BOOST_ASIO_DECL void construct(base_implementation_type& impl);
// Move-construct a new socket implementation.
BOOST_ASIO_DECL void base_move_construct(base_implementation_type& impl,
base_implementation_type& other_impl) noexcept;
// Move-assign from another socket implementation.
BOOST_ASIO_DECL void base_move_assign(base_implementation_type& impl,
reactive_socket_service_base& other_service,
base_implementation_type& other_impl);
// Destroy a socket implementation.
BOOST_ASIO_DECL void destroy(base_implementation_type& impl);
// Determine whether the socket is open.
bool is_open(const base_implementation_type& impl) const
{
return impl.socket_ != invalid_socket;
}
// Destroy a socket implementation.
BOOST_ASIO_DECL boost::system::error_code close(
base_implementation_type& impl, boost::system::error_code& ec);
// Release ownership of the socket.
BOOST_ASIO_DECL socket_type release(
base_implementation_type& impl, boost::system::error_code& ec);
// Get the native socket representation.
native_handle_type native_handle(base_implementation_type& impl)
{
return impl.socket_;
}
// Cancel all operations associated with the socket.
BOOST_ASIO_DECL boost::system::error_code cancel(
base_implementation_type& impl, boost::system::error_code& ec);
// Determine whether the socket is at the out-of-band data mark.
bool at_mark(const base_implementation_type& impl,
boost::system::error_code& ec) const
{
return socket_ops::sockatmark(impl.socket_, ec);
}
// Determine the number of bytes available for reading.
std::size_t available(const base_implementation_type& impl,
boost::system::error_code& ec) const
{
return socket_ops::available(impl.socket_, ec);
}
// Place the socket into the state where it will listen for new connections.
boost::system::error_code listen(base_implementation_type& impl,
int backlog, boost::system::error_code& ec)
{
socket_ops::listen(impl.socket_, backlog, ec);
return ec;
}
// Perform an IO control command on the socket.
template <typename IO_Control_Command>
boost::system::error_code io_control(base_implementation_type& impl,
IO_Control_Command& command, boost::system::error_code& ec)
{
socket_ops::ioctl(impl.socket_, impl.state_, command.name(),
static_cast<ioctl_arg_type*>(command.data()), ec);
return ec;
}
// Gets the non-blocking mode of the socket.
bool non_blocking(const base_implementation_type& impl) const
{
return (impl.state_ & socket_ops::user_set_non_blocking) != 0;
}
// Sets the non-blocking mode of the socket.
boost::system::error_code non_blocking(base_implementation_type& impl,
bool mode, boost::system::error_code& ec)
{
socket_ops::set_user_non_blocking(impl.socket_, impl.state_, mode, ec);
return ec;
}
// Gets the non-blocking mode of the native socket implementation.
bool native_non_blocking(const base_implementation_type& impl) const
{
return (impl.state_ & socket_ops::internal_non_blocking) != 0;
}
// Sets the non-blocking mode of the native socket implementation.
boost::system::error_code native_non_blocking(base_implementation_type& impl,
bool mode, boost::system::error_code& ec)
{
socket_ops::set_internal_non_blocking(impl.socket_, impl.state_, mode, ec);
return ec;
}
// Wait for the socket to become ready to read, ready to write, or to have
// pending error conditions.
boost::system::error_code wait(base_implementation_type& impl,
socket_base::wait_type w, boost::system::error_code& ec)
{
switch (w)
{
case socket_base::wait_read:
socket_ops::poll_read(impl.socket_, impl.state_, -1, ec);
break;
case socket_base::wait_write:
socket_ops::poll_write(impl.socket_, impl.state_, -1, ec);
break;
case socket_base::wait_error:
socket_ops::poll_error(impl.socket_, impl.state_, -1, ec);
break;
default:
ec = boost::asio::error::invalid_argument;
break;
}
return ec;
}
// Asynchronously wait for the socket to become ready to read, ready to
// write, or to have pending error conditions.
template <typename Handler, typename IoExecutor>
void async_wait(base_implementation_type& impl,
socket_base::wait_type w, Handler& handler, const IoExecutor& io_ex)
{
bool is_continuation =
boost_asio_handler_cont_helpers::is_continuation(handler);
associated_cancellation_slot_t<Handler> slot
= boost::asio::get_associated_cancellation_slot(handler);
// Allocate and construct an operation to wrap the handler.
typedef reactive_wait_op<Handler, IoExecutor> op;
typename op::ptr p = { boost::asio::detail::addressof(handler),
op::ptr::allocate(handler), 0 };
p.p = new (p.v) op(success_ec_, handler, io_ex);
BOOST_ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket",
&impl, impl.socket_, "async_wait"));
int op_type;
switch (w)
{
case socket_base::wait_read:
op_type = reactor::read_op;
break;
case socket_base::wait_write:
op_type = reactor::write_op;
break;
case socket_base::wait_error:
op_type = reactor::except_op;
break;
default:
p.p->ec_ = boost::asio::error::invalid_argument;
start_op(impl, reactor::read_op, p.p,
is_continuation, false, true, false, &io_ex, 0);
p.v = p.p = 0;
return;
}
// Optionally register for per-operation cancellation.
if (slot.is_connected())
{
p.p->cancellation_key_ =
&slot.template emplace<reactor_op_cancellation>(
&reactor_, &impl.reactor_data_, impl.socket_, op_type);
}
start_op(impl, op_type, p.p, is_continuation,
false, false, false, &io_ex, 0);
p.v = p.p = 0;
}
// Send the given data to the peer.
template <typename ConstBufferSequence>
size_t send(base_implementation_type& impl,
const ConstBufferSequence& buffers,
socket_base::message_flags flags, boost::system::error_code& ec)
{
typedef buffer_sequence_adapter<boost::asio::const_buffer,
ConstBufferSequence> bufs_type;
if (bufs_type::is_single_buffer)
{
return socket_ops::sync_send1(impl.socket_,
impl.state_, bufs_type::first(buffers).data(),
bufs_type::first(buffers).size(), flags, ec);
}
else
{
bufs_type bufs(buffers);
return socket_ops::sync_send(impl.socket_, impl.state_,
bufs.buffers(), bufs.count(), flags, bufs.all_empty(), ec);
}
}
// Wait until data can be sent without blocking.
size_t send(base_implementation_type& impl, const null_buffers&,
socket_base::message_flags, boost::system::error_code& ec)
{
// Wait for socket to become ready.
socket_ops::poll_write(impl.socket_, impl.state_, -1, ec);
return 0;
}
// Start an asynchronous send. The data being sent must be valid for the
// lifetime of the asynchronous operation.
template <typename ConstBufferSequence, typename Handler, typename IoExecutor>
void async_send(base_implementation_type& impl,
const ConstBufferSequence& buffers, socket_base::message_flags flags,
Handler& handler, const IoExecutor& io_ex)
{
bool is_continuation =
boost_asio_handler_cont_helpers::is_continuation(handler);
associated_cancellation_slot_t<Handler> slot
= boost::asio::get_associated_cancellation_slot(handler);
// Allocate and construct an operation to wrap the handler.
typedef reactive_socket_send_op<
ConstBufferSequence, Handler, IoExecutor> op;
typename op::ptr p = { boost::asio::detail::addressof(handler),
op::ptr::allocate(handler), 0 };
p.p = new (p.v) op(success_ec_, impl.socket_,
impl.state_, buffers, flags, handler, io_ex);
// Optionally register for per-operation cancellation.
if (slot.is_connected())
{
p.p->cancellation_key_ =
&slot.template emplace<reactor_op_cancellation>(
&reactor_, &impl.reactor_data_, impl.socket_, reactor::write_op);
}
BOOST_ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket",
&impl, impl.socket_, "async_send"));
start_op(impl, reactor::write_op, p.p, is_continuation, true,
((impl.state_ & socket_ops::stream_oriented)
&& buffer_sequence_adapter<boost::asio::const_buffer,
ConstBufferSequence>::all_empty(buffers)), true, &io_ex, 0);
p.v = p.p = 0;
}
// Start an asynchronous wait until data can be sent without blocking.
template <typename Handler, typename IoExecutor>
void async_send(base_implementation_type& impl, const null_buffers&,
socket_base::message_flags, Handler& handler, const IoExecutor& io_ex)
{
bool is_continuation =
boost_asio_handler_cont_helpers::is_continuation(handler);
associated_cancellation_slot_t<Handler> slot
= boost::asio::get_associated_cancellation_slot(handler);
// Allocate and construct an operation to wrap the handler.
typedef reactive_null_buffers_op<Handler, IoExecutor> op;
typename op::ptr p = { boost::asio::detail::addressof(handler),
op::ptr::allocate(handler), 0 };
p.p = new (p.v) op(success_ec_, handler, io_ex);
// Optionally register for per-operation cancellation.
if (slot.is_connected())
{
p.p->cancellation_key_ =
&slot.template emplace<reactor_op_cancellation>(
&reactor_, &impl.reactor_data_, impl.socket_, reactor::write_op);
}
BOOST_ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket",
&impl, impl.socket_, "async_send(null_buffers)"));
start_op(impl, reactor::write_op, p.p,
is_continuation, false, false, false, &io_ex, 0);
p.v = p.p = 0;
}
// Receive some data from the peer. Returns the number of bytes received.
template <typename MutableBufferSequence>
size_t receive(base_implementation_type& impl,
const MutableBufferSequence& buffers,
socket_base::message_flags flags, boost::system::error_code& ec)
{
typedef buffer_sequence_adapter<boost::asio::mutable_buffer,
MutableBufferSequence> bufs_type;
if (bufs_type::is_single_buffer)
{
return socket_ops::sync_recv1(impl.socket_,
impl.state_, bufs_type::first(buffers).data(),
bufs_type::first(buffers).size(), flags, ec);
}
else
{
bufs_type bufs(buffers);
return socket_ops::sync_recv(impl.socket_, impl.state_,
bufs.buffers(), bufs.count(), flags, bufs.all_empty(), ec);
}
}
// Wait until data can be received without blocking.
size_t receive(base_implementation_type& impl, const null_buffers&,
socket_base::message_flags, boost::system::error_code& ec)
{
// Wait for socket to become ready.
socket_ops::poll_read(impl.socket_, impl.state_, -1, ec);
return 0;
}
// Start an asynchronous receive. The buffer for the data being received
// must be valid for the lifetime of the asynchronous operation.
template <typename MutableBufferSequence,
typename Handler, typename IoExecutor>
void async_receive(base_implementation_type& impl,
const MutableBufferSequence& buffers, socket_base::message_flags flags,
Handler& handler, const IoExecutor& io_ex)
{
bool is_continuation =
boost_asio_handler_cont_helpers::is_continuation(handler);
associated_cancellation_slot_t<Handler> slot
= boost::asio::get_associated_cancellation_slot(handler);
// Allocate and construct an operation to wrap the handler.
typedef reactive_socket_recv_op<
MutableBufferSequence, Handler, IoExecutor> op;
typename op::ptr p = { boost::asio::detail::addressof(handler),
op::ptr::allocate(handler), 0 };
p.p = new (p.v) op(success_ec_, impl.socket_,
impl.state_, buffers, flags, handler, io_ex);
// Optionally register for per-operation cancellation.
if (slot.is_connected())
{
p.p->cancellation_key_ =
&slot.template emplace<reactor_op_cancellation>(
&reactor_, &impl.reactor_data_, impl.socket_, reactor::read_op);
}
BOOST_ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket",
&impl, impl.socket_, "async_receive"));
start_op(impl,
(flags & socket_base::message_out_of_band)
? reactor::except_op : reactor::read_op,
p.p, is_continuation,
(flags & socket_base::message_out_of_band) == 0,
((impl.state_ & socket_ops::stream_oriented)
&& buffer_sequence_adapter<boost::asio::mutable_buffer,
MutableBufferSequence>::all_empty(buffers)), true, &io_ex, 0);
p.v = p.p = 0;
}
// Wait until data can be received without blocking.
template <typename Handler, typename IoExecutor>
void async_receive(base_implementation_type& impl,
const null_buffers&, socket_base::message_flags flags,
Handler& handler, const IoExecutor& io_ex)
{
bool is_continuation =
boost_asio_handler_cont_helpers::is_continuation(handler);
associated_cancellation_slot_t<Handler> slot
= boost::asio::get_associated_cancellation_slot(handler);
// Allocate and construct an operation to wrap the handler.
typedef reactive_null_buffers_op<Handler, IoExecutor> op;
typename op::ptr p = { boost::asio::detail::addressof(handler),
op::ptr::allocate(handler), 0 };
p.p = new (p.v) op(success_ec_, handler, io_ex);
// Optionally register for per-operation cancellation.
if (slot.is_connected())
{
p.p->cancellation_key_ =
&slot.template emplace<reactor_op_cancellation>(
&reactor_, &impl.reactor_data_, impl.socket_, reactor::read_op);
}
BOOST_ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket",
&impl, impl.socket_, "async_receive(null_buffers)"));
start_op(impl,
(flags & socket_base::message_out_of_band)
? reactor::except_op : reactor::read_op,
p.p, is_continuation, false, false, false, &io_ex, 0);
p.v = p.p = 0;
}
// Receive some data with associated flags. Returns the number of bytes
// received.
template <typename MutableBufferSequence>
size_t receive_with_flags(base_implementation_type& impl,
const MutableBufferSequence& buffers,
socket_base::message_flags in_flags,
socket_base::message_flags& out_flags, boost::system::error_code& ec)
{
buffer_sequence_adapter<boost::asio::mutable_buffer,
MutableBufferSequence> bufs(buffers);
return socket_ops::sync_recvmsg(impl.socket_, impl.state_,
bufs.buffers(), bufs.count(), in_flags, out_flags, ec);
}
// Wait until data can be received without blocking.
size_t receive_with_flags(base_implementation_type& impl,
const null_buffers&, socket_base::message_flags,
socket_base::message_flags& out_flags, boost::system::error_code& ec)
{
// Wait for socket to become ready.
socket_ops::poll_read(impl.socket_, impl.state_, -1, ec);
// Clear out_flags, since we cannot give it any other sensible value when
// performing a null_buffers operation.
out_flags = 0;
return 0;
}
// Start an asynchronous receive. The buffer for the data being received
// must be valid for the lifetime of the asynchronous operation.
template <typename MutableBufferSequence,
typename Handler, typename IoExecutor>
void async_receive_with_flags(base_implementation_type& impl,
const MutableBufferSequence& buffers, socket_base::message_flags in_flags,
socket_base::message_flags& out_flags, Handler& handler,
const IoExecutor& io_ex)
{
bool is_continuation =
boost_asio_handler_cont_helpers::is_continuation(handler);
associated_cancellation_slot_t<Handler> slot
= boost::asio::get_associated_cancellation_slot(handler);
// Allocate and construct an operation to wrap the handler.
typedef reactive_socket_recvmsg_op<
MutableBufferSequence, Handler, IoExecutor> op;
typename op::ptr p = { boost::asio::detail::addressof(handler),
op::ptr::allocate(handler), 0 };
p.p = new (p.v) op(success_ec_, impl.socket_,
buffers, in_flags, out_flags, handler, io_ex);
// Optionally register for per-operation cancellation.
if (slot.is_connected())
{
p.p->cancellation_key_ =
&slot.template emplace<reactor_op_cancellation>(
&reactor_, &impl.reactor_data_, impl.socket_, reactor::read_op);
}
BOOST_ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket",
&impl, impl.socket_, "async_receive_with_flags"));
start_op(impl,
(in_flags & socket_base::message_out_of_band)
? reactor::except_op : reactor::read_op,
p.p, is_continuation,
(in_flags & socket_base::message_out_of_band) == 0,
false, true, &io_ex, 0);
p.v = p.p = 0;
}
// Wait until data can be received without blocking.
template <typename Handler, typename IoExecutor>
void async_receive_with_flags(base_implementation_type& impl,
const null_buffers&, socket_base::message_flags in_flags,
socket_base::message_flags& out_flags, Handler& handler,
const IoExecutor& io_ex)
{
bool is_continuation =
boost_asio_handler_cont_helpers::is_continuation(handler);
associated_cancellation_slot_t<Handler> slot
= boost::asio::get_associated_cancellation_slot(handler);
// Allocate and construct an operation to wrap the handler.
typedef reactive_null_buffers_op<Handler, IoExecutor> op;
typename op::ptr p = { boost::asio::detail::addressof(handler),
op::ptr::allocate(handler), 0 };
p.p = new (p.v) op(success_ec_, handler, io_ex);
// Optionally register for per-operation cancellation.
if (slot.is_connected())
{
p.p->cancellation_key_ =
&slot.template emplace<reactor_op_cancellation>(
&reactor_, &impl.reactor_data_, impl.socket_, reactor::read_op);
}
BOOST_ASIO_HANDLER_CREATION((reactor_.context(), *p.p, "socket",
&impl, impl.socket_, "async_receive_with_flags(null_buffers)"));
// Clear out_flags, since we cannot give it any other sensible value when
// performing a null_buffers operation.
out_flags = 0;
start_op(impl,
(in_flags & socket_base::message_out_of_band)
? reactor::except_op : reactor::read_op,
p.p, is_continuation, false, false, false, &io_ex, 0);
p.v = p.p = 0;
}
protected:
// Open a new socket implementation.
BOOST_ASIO_DECL boost::system::error_code do_open(
base_implementation_type& impl, int af,
int type, int protocol, boost::system::error_code& ec);
// Assign a native socket to a socket implementation.
BOOST_ASIO_DECL boost::system::error_code do_assign(
base_implementation_type& impl, int type,
const native_handle_type& native_socket, boost::system::error_code& ec);
// Start the asynchronous read or write operation.
BOOST_ASIO_DECL void do_start_op(base_implementation_type& impl,
int op_type, reactor_op* op, bool is_continuation,
bool allow_speculative, bool noop, bool needs_non_blocking,
void (*on_immediate)(operation* op, bool, const void*),
const void* immediate_arg);
// Start the asynchronous operation for handlers that are specialised for
// immediate completion.
template <typename Op>
void start_op(base_implementation_type& impl, int op_type, Op* op,
bool is_continuation, bool allow_speculative, bool noop,
bool needs_non_blocking, const void* io_ex, ...)
{
return do_start_op(impl, op_type, op, is_continuation, allow_speculative,
noop, needs_non_blocking, &Op::do_immediate, io_ex);
}
// Start the asynchronous operation for handlers that are not specialised for
// immediate completion.
template <typename Op>
void start_op(base_implementation_type& impl, int op_type,
Op* op, bool is_continuation, bool allow_speculative,
bool noop, bool needs_non_blocking, const void*,
enable_if_t<
is_same<
typename associated_immediate_executor<
typename Op::handler_type,
typename Op::io_executor_type
>::asio_associated_immediate_executor_is_unspecialised,
void
>::value
>*)
{
return do_start_op(impl, op_type, op, is_continuation,
allow_speculative, noop, needs_non_blocking,
&reactor::call_post_immediate_completion, &reactor_);
}
// Start the asynchronous accept operation.
BOOST_ASIO_DECL void do_start_accept_op(base_implementation_type& impl,
reactor_op* op, bool is_continuation, bool peer_is_open,
void (*on_immediate)(operation* op, bool, const void*),
const void* immediate_arg);
// Start the asynchronous accept operation for handlers that are specialised
// for immediate completion.
template <typename Op>
void start_accept_op(base_implementation_type& impl, Op* op,
bool is_continuation, bool peer_is_open, const void* io_ex, ...)
{
return do_start_accept_op(impl, op, is_continuation,
peer_is_open, &Op::do_immediate, io_ex);
}
// Start the asynchronous operation for handlers that are not specialised for
// immediate completion.
template <typename Op>
void start_accept_op(base_implementation_type& impl, Op* op,
bool is_continuation, bool peer_is_open, const void*,
enable_if_t<
is_same<
typename associated_immediate_executor<
typename Op::handler_type,
typename Op::io_executor_type
>::asio_associated_immediate_executor_is_unspecialised,
void
>::value
>*)
{
return do_start_accept_op(impl, op, is_continuation, peer_is_open,
&reactor::call_post_immediate_completion, &reactor_);
}
// Start the asynchronous connect operation.
BOOST_ASIO_DECL void do_start_connect_op(base_implementation_type& impl,
reactor_op* op, bool is_continuation, const void* addr, size_t addrlen,
void (*on_immediate)(operation* op, bool, const void*),
const void* immediate_arg);
// Start the asynchronous operation for handlers that are specialised for
// immediate completion.
template <typename Op>
void start_connect_op(base_implementation_type& impl,
Op* op, bool is_continuation, const void* addr,
size_t addrlen, const void* io_ex, ...)
{
return do_start_connect_op(impl, op, is_continuation,
addr, addrlen, &Op::do_immediate, io_ex);
}
// Start the asynchronous operation for handlers that are not specialised for
// immediate completion.
template <typename Op>
void start_connect_op(base_implementation_type& impl, Op* op,
bool is_continuation, const void* addr, size_t addrlen, const void*,
enable_if_t<
is_same<
typename associated_immediate_executor<
typename Op::handler_type,
typename Op::io_executor_type
>::asio_associated_immediate_executor_is_unspecialised,
void
>::value
>*)
{
return do_start_connect_op(impl, op, is_continuation, addr,
addrlen, &reactor::call_post_immediate_completion, &reactor_);
}
// Helper class used to implement per-operation cancellation
class reactor_op_cancellation
{
public:
reactor_op_cancellation(reactor* r,
reactor::per_descriptor_data* p, socket_type d, int o)
: reactor_(r),
reactor_data_(p),
descriptor_(d),
op_type_(o)
{
}
void operator()(cancellation_type_t type)
{
if (!!(type &
(cancellation_type::terminal
| cancellation_type::partial
| cancellation_type::total)))
{
reactor_->cancel_ops_by_key(descriptor_,
*reactor_data_, op_type_, this);
}
}
private:
reactor* reactor_;
reactor::per_descriptor_data* reactor_data_;
socket_type descriptor_;
int op_type_;
};
// The selector that performs event demultiplexing for the service.
reactor& reactor_;
// Cached success value to avoid accessing category singleton.
const boost::system::error_code success_ec_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#if defined(BOOST_ASIO_HEADER_ONLY)
# include <boost/asio/detail/impl/reactive_socket_service_base.ipp>
#endif // defined(BOOST_ASIO_HEADER_ONLY)
#endif // !defined(BOOST_ASIO_HAS_IOCP)
// && !defined(BOOST_ASIO_WINDOWS_RUNTIME)
// && !defined(BOOST_ASIO_HAS_IO_URING_AS_DEFAULT)
#endif // BOOST_ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_BASE_HPP