Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

This is the documentation for a snapshot of the develop branch, built from commit 105a976f7e.
PrevUpHomeNext

Dynamic interval

#include <iostream>
#include <string>
#include <math.h>
#include <boost/type_traits/is_same.hpp>

#include <boost/icl/interval_set.hpp>
#include <boost/icl/split_interval_set.hpp>
// Dynamically bounded intervals 'discrete_interval' and 'continuous_interval'
// are indirectly included via interval containers as library defaults.
#include "../toytime.hpp"
#include <boost/icl/rational.hpp>

using namespace std;
using namespace boost;
using namespace boost::icl;

int main()
{
    cout << ">>Interval Container Library: Sample interval.cpp <<\n";
    cout << "----------------------------------------------------\n";

    // Dynamically bounded intervals are the library default for 
    // interval parameters in interval containers.
    BOOST_STATIC_ASSERT((
        boost::is_same< interval_set<int>::interval_type
                      , discrete_interval<int> >::value
                      ));


    BOOST_STATIC_ASSERT((
        boost::is_same< interval_set<float>::interval_type
                      , continuous_interval<float> >::value
                      ));

    // As we can see the library default chooses the appropriate
    // class template instance discrete_interval<T> or continuous_interval<T>
    // dependent on the domain_type T. The library default for intervals
    // is also available via the template 'interval':
    BOOST_STATIC_ASSERT((
        boost::is_same< interval<int>::type
                      , discrete_interval<int> >::value
                      ));

    BOOST_STATIC_ASSERT((
        boost::is_same< interval<float>::type
                      , continuous_interval<float> >::value
                      ));

    // template interval also provides static functions for the four border types

    interval<int>::type    int_interval  = interval<int>::closed(3, 7);
    interval<double>::type sqrt_interval = interval<double>::right_open(1/sqrt(2.0), sqrt(2.0));
    interval<string>::type city_interval = interval<string>::left_open("Barcelona", "Boston");
    interval<Time>::type   time_interval = interval<Time>::open(Time(monday,8,30), Time(monday,17,20));

    cout << "----- Dynamically bounded intervals ----------------------------------------\n";
    cout << "  discrete_interval<int>   : " << int_interval  << endl;
    cout << "continuous_interval<double>: " << sqrt_interval << " does "
                                            << string(contains(sqrt_interval, sqrt(2.0))?"":"NOT")
                                            << " contain sqrt(2)" << endl;
    cout << "continuous_interval<string>: " << city_interval << " does "
                                            << string(contains(city_interval,"Barcelona")?"":"NOT")
                                            << " contain 'Barcelona'" << endl;
    cout << "continuous_interval<string>: " << city_interval << " does "
                                            << string(contains(city_interval, "Berlin")?"":"NOT")
                                            << " contain 'Berlin'" << endl;
    cout << "  discrete_interval<Time>  : " << time_interval << "\n\n";

    // Using dynamically bounded intervals allows to apply operations
    // with intervals and also with elements on all interval containers 
    // including interval containers of continuous domain types:

    interval<rational<int> >::type unit_interval
        = interval<rational<int> >::right_open(rational<int>(0), rational<int>(1));
    interval_set<rational<int> > unit_set(unit_interval);
    interval_set<rational<int> > ratio_set(unit_set);
    ratio_set -= rational<int>(1,3); // Subtract 1/3 from the set

    cout << "----- Manipulation of single values in continuous sets ---------------------\n";
    cout << "1/3 subtracted from [0..1) : " << ratio_set << endl;
    cout << "The set does " << string(contains(ratio_set, rational<int>(1,3))?"":"NOT")
                                            << " contain '1/3'" << endl;
    ratio_set ^= unit_set;
    cout << "Flipping the holey set     : " << ratio_set << endl;
    cout << "yields the subtracted      :     1/3\n\n";

    // Of course we can use interval types that are different from the
    // library default by explicit instantiation:
    split_interval_set<int, std::less, closed_interval<Time> > intuitive_times;
    // Interval set 'intuitive_times' uses statically bounded closed intervals
    intuitive_times += closed_interval<Time>(Time(monday,  9,00), Time(monday, 10,59));
    intuitive_times += closed_interval<Time>(Time(monday, 10,00), Time(monday, 11,59));
    cout << "----- Here we are NOT using the library default for intervals --------------\n";
    cout << intuitive_times << endl;

    return 0;
}

// Program output:
//>>Interval Container Library: Sample interval.cpp <<
//----------------------------------------------------
//----- Dynamically bounded intervals ----------------------------------------
//  discrete_interval<int>   : [3,7]
//continuous_interval<double>: [0.707107,1.41421) does NOT contain sqrt(2)
//continuous_interval<string>: (Barcelona,Boston] does NOT contain 'Barcelona'
//continuous_interval<string>: (Barcelona,Boston] does  contain 'Berlin'
//  discrete_interval<Time>  : (mon:08:30,mon:17:20)
//
//----- Manipulation of single values in continuous sets ---------------------
//1/3 subtracted from [0..1) : {[0/1,1/3)(1/3,1/1)}
//The set does NOT contain '1/3'
//Flipping the holey set     : {[1/3,1/3]}
//yields the subtracted      :     1/3
//
//----- Here we are NOT using the library default for intervals --------------
//{[mon:09:00,mon:09:59][mon:10:00,mon:10:59][mon:11:00,mon:11:59]}


PrevUpHomeNext