boost/math/distributions/normal.hpp
// Copyright John Maddock 2006, 2007.
// Copyright Paul A. Bristow 2006, 2007.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_STATS_NORMAL_HPP
#define BOOST_STATS_NORMAL_HPP
// http://en.wikipedia.org/wiki/Normal_distribution
// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
// Also:
// Weisstein, Eric W. "Normal Distribution."
// From MathWorld--A Wolfram Web Resource.
// http://mathworld.wolfram.com/NormalDistribution.html
#include <boost/math/distributions/fwd.hpp>
#include <boost/math/special_functions/erf.hpp> // for erf/erfc.
#include <boost/math/distributions/complement.hpp>
#include <boost/math/distributions/detail/common_error_handling.hpp>
#include <utility>
#include <type_traits>
namespace boost{ namespace math{
template <class RealType = double, class Policy = policies::policy<> >
class normal_distribution
{
public:
using value_type = RealType;
using policy_type = Policy;
explicit normal_distribution(RealType l_mean = 0, RealType sd = 1)
: m_mean(l_mean), m_sd(sd)
{ // Default is a 'standard' normal distribution N01.
static const char* function = "boost::math::normal_distribution<%1%>::normal_distribution";
RealType result;
detail::check_scale(function, sd, &result, Policy());
detail::check_location(function, l_mean, &result, Policy());
}
RealType mean()const
{ // alias for location.
return m_mean;
}
RealType standard_deviation()const
{ // alias for scale.
return m_sd;
}
// Synonyms, provided to allow generic use of find_location and find_scale.
RealType location()const
{ // location.
return m_mean;
}
RealType scale()const
{ // scale.
return m_sd;
}
private:
//
// Data members:
//
RealType m_mean; // distribution mean or location.
RealType m_sd; // distribution standard deviation or scale.
}; // class normal_distribution
using normal = normal_distribution<double>;
//
// Deduction guides, note we don't check the
// value of __cpp_deduction_guides, just assume
// they work as advertised, even if this is pre-final C++17.
//
#ifdef __cpp_deduction_guides
template <class RealType>
normal_distribution(RealType, RealType)->normal_distribution<typename boost::math::tools::promote_args<RealType>::type>;
template <class RealType>
normal_distribution(RealType)->normal_distribution<typename boost::math::tools::promote_args<RealType>::type>;
#endif
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable:4127)
#endif
template <class RealType, class Policy>
inline std::pair<RealType, RealType> range(const normal_distribution<RealType, Policy>& /*dist*/)
{ // Range of permissible values for random variable x.
if (std::numeric_limits<RealType>::has_infinity)
{
return std::pair<RealType, RealType>(-std::numeric_limits<RealType>::infinity(), std::numeric_limits<RealType>::infinity()); // - to + infinity.
}
else
{ // Can only use max_value.
using boost::math::tools::max_value;
return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); // - to + max value.
}
}
template <class RealType, class Policy>
inline std::pair<RealType, RealType> support(const normal_distribution<RealType, Policy>& /*dist*/)
{ // This is range values for random variable x where cdf rises from 0 to 1, and outside it, the pdf is zero.
if (std::numeric_limits<RealType>::has_infinity)
{
return std::pair<RealType, RealType>(-std::numeric_limits<RealType>::infinity(), std::numeric_limits<RealType>::infinity()); // - to + infinity.
}
else
{ // Can only use max_value.
using boost::math::tools::max_value;
return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); // - to + max value.
}
}
#ifdef _MSC_VER
#pragma warning(pop)
#endif
template <class RealType, class Policy>
inline RealType pdf(const normal_distribution<RealType, Policy>& dist, const RealType& x)
{
BOOST_MATH_STD_USING // for ADL of std functions
RealType sd = dist.standard_deviation();
RealType mean = dist.mean();
static const char* function = "boost::math::pdf(const normal_distribution<%1%>&, %1%)";
RealType result = 0;
if(false == detail::check_scale(function, sd, &result, Policy()))
{
return result;
}
if(false == detail::check_location(function, mean, &result, Policy()))
{
return result;
}
if((boost::math::isinf)(x))
{
return 0; // pdf + and - infinity is zero.
}
if(false == detail::check_x(function, x, &result, Policy()))
{
return result;
}
RealType exponent = x - mean;
exponent *= -exponent;
exponent /= 2 * sd * sd;
result = exp(exponent);
result /= sd * sqrt(2 * constants::pi<RealType>());
return result;
} // pdf
template <class RealType, class Policy>
inline RealType logpdf(const normal_distribution<RealType, Policy>& dist, const RealType& x)
{
BOOST_MATH_STD_USING // for ADL of std functions
const RealType sd = dist.standard_deviation();
const RealType mean = dist.mean();
static const char* function = "boost::math::logpdf(const normal_distribution<%1%>&, %1%)";
RealType result = -std::numeric_limits<RealType>::infinity();
if(false == detail::check_scale(function, sd, &result, Policy()))
{
return result;
}
if(false == detail::check_location(function, mean, &result, Policy()))
{
return result;
}
if((boost::math::isinf)(x))
{
return result; // pdf + and - infinity is zero so logpdf is -inf
}
if(false == detail::check_x(function, x, &result, Policy()))
{
return result;
}
const RealType pi = boost::math::constants::pi<RealType>();
const RealType half = boost::math::constants::half<RealType>();
result = -log(sd) - half*log(2*pi) - (x-mean)*(x-mean)/(2*sd*sd);
return result;
}
template <class RealType, class Policy>
inline RealType cdf(const normal_distribution<RealType, Policy>& dist, const RealType& x)
{
BOOST_MATH_STD_USING // for ADL of std functions
RealType sd = dist.standard_deviation();
RealType mean = dist.mean();
static const char* function = "boost::math::cdf(const normal_distribution<%1%>&, %1%)";
RealType result = 0;
if(false == detail::check_scale(function, sd, &result, Policy()))
{
return result;
}
if(false == detail::check_location(function, mean, &result, Policy()))
{
return result;
}
if((boost::math::isinf)(x))
{
if(x < 0) return 0; // -infinity
return 1; // + infinity
}
if(false == detail::check_x(function, x, &result, Policy()))
{
return result;
}
RealType diff = (x - mean) / (sd * constants::root_two<RealType>());
result = boost::math::erfc(-diff, Policy()) / 2;
return result;
} // cdf
template <class RealType, class Policy>
inline RealType quantile(const normal_distribution<RealType, Policy>& dist, const RealType& p)
{
BOOST_MATH_STD_USING // for ADL of std functions
RealType sd = dist.standard_deviation();
RealType mean = dist.mean();
static const char* function = "boost::math::quantile(const normal_distribution<%1%>&, %1%)";
RealType result = 0;
if(false == detail::check_scale(function, sd, &result, Policy()))
return result;
if(false == detail::check_location(function, mean, &result, Policy()))
return result;
if(false == detail::check_probability(function, p, &result, Policy()))
return result;
result= boost::math::erfc_inv(2 * p, Policy());
result = -result;
result *= sd * constants::root_two<RealType>();
result += mean;
return result;
} // quantile
template <class RealType, class Policy>
inline RealType cdf(const complemented2_type<normal_distribution<RealType, Policy>, RealType>& c)
{
BOOST_MATH_STD_USING // for ADL of std functions
RealType sd = c.dist.standard_deviation();
RealType mean = c.dist.mean();
RealType x = c.param;
static const char* function = "boost::math::cdf(const complement(normal_distribution<%1%>&), %1%)";
RealType result = 0;
if(false == detail::check_scale(function, sd, &result, Policy()))
return result;
if(false == detail::check_location(function, mean, &result, Policy()))
return result;
if((boost::math::isinf)(x))
{
if(x < 0) return 1; // cdf complement -infinity is unity.
return 0; // cdf complement +infinity is zero
}
if(false == detail::check_x(function, x, &result, Policy()))
return result;
RealType diff = (x - mean) / (sd * constants::root_two<RealType>());
result = boost::math::erfc(diff, Policy()) / 2;
return result;
} // cdf complement
template <class RealType, class Policy>
inline RealType quantile(const complemented2_type<normal_distribution<RealType, Policy>, RealType>& c)
{
BOOST_MATH_STD_USING // for ADL of std functions
RealType sd = c.dist.standard_deviation();
RealType mean = c.dist.mean();
static const char* function = "boost::math::quantile(const complement(normal_distribution<%1%>&), %1%)";
RealType result = 0;
if(false == detail::check_scale(function, sd, &result, Policy()))
return result;
if(false == detail::check_location(function, mean, &result, Policy()))
return result;
RealType q = c.param;
if(false == detail::check_probability(function, q, &result, Policy()))
return result;
result = boost::math::erfc_inv(2 * q, Policy());
result *= sd * constants::root_two<RealType>();
result += mean;
return result;
} // quantile
template <class RealType, class Policy>
inline RealType mean(const normal_distribution<RealType, Policy>& dist)
{
return dist.mean();
}
template <class RealType, class Policy>
inline RealType standard_deviation(const normal_distribution<RealType, Policy>& dist)
{
return dist.standard_deviation();
}
template <class RealType, class Policy>
inline RealType mode(const normal_distribution<RealType, Policy>& dist)
{
return dist.mean();
}
template <class RealType, class Policy>
inline RealType median(const normal_distribution<RealType, Policy>& dist)
{
return dist.mean();
}
template <class RealType, class Policy>
inline RealType skewness(const normal_distribution<RealType, Policy>& /*dist*/)
{
return 0;
}
template <class RealType, class Policy>
inline RealType kurtosis(const normal_distribution<RealType, Policy>& /*dist*/)
{
return 3;
}
template <class RealType, class Policy>
inline RealType kurtosis_excess(const normal_distribution<RealType, Policy>& /*dist*/)
{
return 0;
}
template <class RealType, class Policy>
inline RealType entropy(const normal_distribution<RealType, Policy> & dist)
{
using std::log;
RealType arg = constants::two_pi<RealType>()*constants::e<RealType>()*dist.standard_deviation()*dist.standard_deviation();
return log(arg)/2;
}
} // namespace math
} // namespace boost
// This include must be at the end, *after* the accessors
// for this distribution have been defined, in order to
// keep compilers that support two-phase lookup happy.
#include <boost/math/distributions/detail/derived_accessors.hpp>
#endif // BOOST_STATS_NORMAL_HPP