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BRIEF

Modern processors obtain their power increasing the number of “cores” or HW threads, which permit them to
execute several processes simultaneously, with a shared memory structure.

SPEED OR LOW MEMORY

In the parallel sorting algorithms, we can find two categories .

SUBDIVISION ALGORITHMS  
Filter the data and generate two or more parts. Each part obtained is filtered and divided by other threads,
until the size of the data to sort is smaller than a predefined size, then it is sorted by a single thread. The
algorithm most frequently used in the filter and sort is quick sort.

These algorithms are fast with a small number of threads, but inefficient with a large number of HW threads.
Examples of this category are :

◦Intel Threading Building Blocks (TBB)
◦Microsoft PPL Parallel Sort.

MERGING ALGORITHMS
Divide the data into many parts at the beginning, and sort each part with a separate thread. When the parts
are sorted, merge them to obtain the final result. These algorithms need additional memory for the merge,
usually an amount equal to the size of the input data.

With a small number of threads, these algorithms usually have similar speed to the subdivision algorithms,
but with many threads they are much faster . Examples of this category are :

◦GCC Parallel Sort (based on OpenMP)
◦Microsoft PPL Parallel Buffered Sort

SPEED AND LOW MEMORY

This new algorithm is an unstable parallel  sort  algorithm, created for processors connected with shared
memory.  This  provides  excellent  performance in  machines  with  many HW threads,  similar  to  the  GCC
Parallel Sort, and better than TBB, with the additional advantage of lower memory consumption.

This algorithm uses as auxiliary memory a block_size elements buffer for each thread. The block_size is an
internal parameter of the algorithm, which, in order to achieve the highest speed, change according the size
of the objects to sort according the next table. The strings use a block_size of 128.

object size 1 - 15 16 - 31 32 - 63 64 - 127 128 - 255 256 - 511 512 - 

block_size 4096 2048 1024 768 512 256 128

The worst case memory usage for the algorithm is when elements are large and there are many threads.
With big elements (512 bytes), and 12 threads, the memory measured was:

• GCC Parallel Sort  1565 MB
• Threading Building Blocks (TBB)   783 MB
• Block Indirect Sort    812 MB
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1.- OVERVIEW OF THE PARALLEL SORTING
     ALGORITHMS
Among the unstable parallel sorting algorithms, there are basically two types:

1.- SUBDIVISION ALGORITHMS

As Parallel Quick Sort.  One thread divides the problem in two parts. Each part obtained is divided by
other threads, until the subdivision generates sufficient parts to keep all the threads buys.  The below
example shows that this means with a 32 HW threads processor, with N elements to sort.

Step
1
2
3
4
5
6

Threads working
1
2
4
8
16
32

Threads waiting
31
30
28
24
16
0

Elements to process by each thread
 N
 N / 2
 N / 4
 N / 8
 N / 16
 N / 32

Very even splitting would be unusual in reality, where most subdivisions are uneven

This algorithm is very fast and don't need additional memory, but the performance is not good when
the number of threads grows. In the table before, until the 6th division, don't have work for to have
busy all the HW threads, with the additional problem that the first division is the hardest, because the
number of elements is very large.

2.- MERGING ALGORITHMS,

Divide the data into many parts at the beginning, and sort each part with a separate thread. When
the parts are sorted, merge them to obtain the final result. These algorithms need additional memory
for the merge, usually an amount equal to the size of the input data.

These algorithms provide the best performance with many threads, but their performance with a low
number of threads is worse than the subdivision algorithms.

2.- INTERNAL DESCRIPTION OF THE ALGORITHM
This new algorithm (Block Indirect), is a merging algorithm. It has similar performance to GCC Parallel Sort
With  many  threads,  but  using  a  low  amount  of  additional  memory,  close  to  that  used  by  subdivision
algorithms.

Internally, the algorithm, manage blocks of elements. The number of elements of the block (block_size),
change according the size of the objects to sort according the next table. The strings use a block_size of
128.

object size 1 - 15 16 - 31 32 - 63 64 - 127 128 - 255 256 - 511 512 - 

block_size 4096 2048 1024 768 512 256 128

This new algorithm only need an auxiliary memory of one block of elements for each HW thread. The worst
case memory usage for the algorithm is when elements are large and there are many threads. With big
elements (512 bytes), and 12 threads, the memory measured was:

• GCC Parallel Sort  1565 MB
• Threading Building Blocks (TBB)   783 MB
• Block Indirect Sort    812 MB
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These algorithms are not optimal when using just 1 thread, but are easily parallelized, and need only a small
amount of auxiliary memory.

The algorithm divide the number of elements in a number of parts that is the first power of two greater than
or equal to the number of threads to use. ( For example: with 3  threads, make 4 parts, for 9 threads make 16
parts…) Each part obtained is sorted by the parallel intro sort algorithm.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-16

1-2-3-4 5-6-7-8 9-10-11-12 13-14-15-16

1-2-3-4-5-6-7-8 9-10-11-12-13-14-15-16

1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16

With the sorted parts, merge pairs of parts. We consider the elements are in blocks of fixed size. We initially
restrict the number of elements to sort (N) to a multiple of the block size. For to explain the algorithm, I use
several  examples  with  a  block size of  4.  Each  thread receives  a  number  of  blocks to  sort,  and  when
complete we have a succession of blocks sorted.

For the merge, we have two successions of block sorted. We sort the blocks of the two parts the first element
of the block. This merge is not fully sorted, is sorted only by the first element. We call this First Merge

But if we merge the first block with the second, the second with the third and this successively, we will obtain
a new list fully sorted with a size of the sum of the blocks of the first part plus the blocks of the second part.
This merge algorithm, only need an auxiliary memory of the size of a block.

Part 1 Part 2
First
merge Pass 1 Pass 2 Pass 3 Pass 4

Final
Merge

2
5
9
10

2
3
4
5

2
3
4
5

2
5
9
10

3
4
6
7

3
4
6
7

6
7
9
10

6
7
8
9

6
7
8
9

12
28
32
34

8
11
13
14

8
11
13
14

10
11
13
14

10
11
12
13

10
11
12
13

35
37
39
40

16
20
27
29

12
28
32
34

14
28
32
34

14
16
20
27

14
16
20
27

44
46
50
71

36
38
45
60

16
20
27
29

28
29
32
34

28
29
32
34

35
37
39
40

35
36
37
38

35
36
37
38

36
38
45
60

39
40
45
60

39
40
44
45

39
40
44
45

44
46
50
71

46
50
60
71

46
50
60
71
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The idea which make interesting this algorithm, is that you can divide, in an easy way, the total number of
blocks to merge,  in several parts, obtaining several groups of blocks, independents between them, which
can be merged in parallel.

2.1.- MERGE SUBDIVISION

Suppose, we have the next first merge, with block size of 4, and want to divide in two independent parts, to
be executed by different threads.

To divide, we must looking for a border between two blocks of different color. And make the merge between
them. In the example, to obtain parts of similar size , we can cut in the frontier 4-5, or in the border 5 -6,
being the two options.

Block
Number

First
Merge

Option 1
Border 4 -5

Option 2
Border 5-6

0 10
12
14
20

10
12
14
20

10
12
14
20

1 21
70
85
200

21
70
85
200

21
70
85
200

2 22
24
28
30

22
24
28
30

22
24
28
30

3 31
35
37
40

31
35
37
40

31
35
37
40

4 41
43
45
50

41
43
45
50

41
43
45
50

5 201
470
890
2000

201
470
890
2000

201
210
212
216

6 210
212
216
220

210
212
216
220

220
470
890
2000

7 221
224
227
230

221
224
227
230

221
224
227
230

8 2100
2104
2106
2110

2100
2104
2106
2110

2100
2104
2106
2110

9 2120
2124
2126
2130

2120
2124
2126
2130

2120
2124
2126
2130

In the option 1, the frontier is between the blocks 4 and 5, and the last of the block 4 is less or equal than the 
first of the block 5, and don't need merge. We have two parts, which can be merged in a parallel way The 
first with the blocks 0 to 4, and the second with the 5 to 9.
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In the option 2, the frontier is between the blocks 5 and 6, and the last of the block 5 is greater than the first
of the block 6, and we must do the merge of the two blocks, and appear new values for the blocks 5 and 6.
Then we have two parts, which can be merged in a parallel way. The first with the blocks from 0 to 5, and the
second with the 6 to 9.

2.2.- NUMBER OF ELEMENTS NOT MULTIPLE OF THE BLOCK 
SIZE

Until now, we assumed the number of elements is a multiple of the block size. When this is not true, we
configure the blocks, beginning for the position 0, and at end we have an incomplete block called tail. The tail
block always is in the last part to merge. We use a special operation just for this block, described in the next
example :

We have two groups of blocks A and B, with NA and NB blocks respectively. The tail block, if exist, always is
in the group B. Merge the tail block with the last block of the group A. With the merge two cases appear
shown in the next examples:

Case 1: The first value of the NA block don't change, and don't do nothing with the blocks.

Group A Group B

Merge of
the blocks
NA and NB

Group A  Group B

     NA -1

34
35
38
39

28
29
36
41

     NA-1

34
35
38
39

28
29
36
41

       NA

40
50
56
70

         
NB-1

46
47
49
51

     NA

40
50
52
54

           
NB -1

46
47
49
51

         
NB

52
54       NB

56
70

Case 2: The first value of the block A, changes, and we delete the block of the group A and insert in the
group B, immediately before the tail block. With this operation we guarantee the tail block is the last

Group A Group B

Merge of the blocks NA
and NB.

The first value of NA
change.

Take the NA block and
insert in the NB position.

Group A Group B

          
NA-1

26
27
36
37

         
NB-2

11
12
13
15

           
NA -1

26
27
36
37

          NB-
2

11
12
13
15

          
NA

40
50
56
70

         
NB-1

16
17
19
20

           
NB-1

16
17
19
20

NB

22
24             

NB

22
24
40
50

NB+1
56
70
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2.3.- INDIRECT SORT

In today's computers, the main bottleneck is the data bus. When the process needs to manage memory in
memory  different  locations,  as  in  the  parallel  sorting  algorithms,  the  data  bus  limits  the  speed  of  the
algorithm.

In the benchmarks done on a 32 HW threads, sorting  N elements of 64 Bytes of size requires the same time
as sorting N / 2  elements 128 bytes of size. The comparison is the same with the two sizes.

In the algorithm described, in each merge, the blocks are moved, to be merged in the next step. This slows
down the algorithm, due to the data bus bottleneck.

To avoid this, do an indirect merge. We have an index with the relative position of the blocks. This implies the
blocks to merge are not contiguous, but that doesn't change the validity of the algorithm.

When all the merges are complete, with this index we move the blocks, and have all the data sorted. This
block movement is done with a simple and parallel algorithm,

2.4.- IN PLACE REARRANGEMENT FROM A INDEX (BLOCK 
SORTING)

The tail block, if one exists, is always in the last position, and doesn't need to be moved. We move  blocks
with the same size using an index. The best way is to see with an example :

We have an unsorted data vector (D) with numbers. We also have, an index ( I ), which is a vector with the
relative position of the elements of D

D 0 1 2 3 4 5 6 7

200 500 600 900 100 400 700 800

I 0 1 2 3 4 5 6 7

4 0 5 1 2 6 7 3

To move the data, we need an auxiliary variable (Aux) of the same size as the data. In this example  the data
is a number, but in the case of blocks, the variable must have the size of a block.

This can be a bit confusing. Here are the steps of the process :

• Aux = D[0], and after this we must find which element must be copied in the position D[0],  we find it
in the position 0 of the index, and it is the position 4.

• The next step is D[0] = D[4], and find the position to move to the position 4, in the position 4 of the
index, and this is the position 2.

• When doing this successively,  once the new position obtained is the first  position used, (in this
example is the 0), move to this position from the Aux variable, and the cycle is closed.

In this example the steps are:

Aux   D[0]←
D[0]  D[4]←
D[4]  D[2]←
D[2]  D[5]←
D[5]  D[6]←
D[6]  D[7]←
D[7]  D[3]←
D[3]  D[1]←
D[1]  Aux←
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If we follow the arrows, we see a closed cycle. This cycle has a sequence formed by the position of the
elements passed. In this example the sequence is 0, 4, 2, 5, 6, 7, 3, 1.

With small elements the sequence is useless, because instead of extracting the sequence, we can move the
data, and all is done. But with big elements, as the blocks used in this algorithm, the sequence are very
useful, because from the sequences, we generate the parallel work for the  threads.

There can be several cycles In an index, with their corresponding sequences. To extract the sequences,
begin with the index.

• If  in a position, the content is the position, indicate this element is sorted, and don't  need to be
moved.

• If it's different, this imply it's the beginning of a cycle, and must extract the sequence, as described
before, and determine the positions visited in the index.

We can see with an example of an index with several cycles.

Data vector (D)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

24 23 20 15 12 10 21 17 19 13 22 18 14 11 16

Index (I)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

5 13 4 9 12 3 14 7 11 8 2 6 10 1 0

Doing the procedure previously described,  find 3 sequences
• 5, 3, 9, 8, 11, 6, 14, 0
• 4, 12, 10, 2
• 13, 1

In the real problems, usually appear a few long sequences, and many small sequences. This permits parallel
execution, but it's not very efficient, because a long sequence can keep one thread busy while the other

threads are waiting, because they are finished with the sort sequences. Or even worse, there can be just
one sequence.

To deal with this issue, the long sequences can be easily divided and done in parallel. This permit an optimal
parallelization.

2.5- SEQUENCE PARALLELIZATION

The procedure can be a bit confusing, so here’s an example:

Data vector (D)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

100 140 70 60 90 00 160 80 50 130 150 20 170 10 110 30 120 40

Index vector (I)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

5 13 11 15 17 8 3 2 7 4 0 14 16 9 1 10 6 12

If we extract the sequence, as described before, we find only one loop, and one sequence. This sequence is;

5 8 7 2 11 14 1 13 9 4 17 12 16 6 3 15 10 0

We want to divide in 3 sequences of 6 elements. Each sequence obtained are  independent between them
and can be done in parallel. The procedure is :
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Generate a fourth sequence with the contents on the last position of each sequence. In this example is

14 12 0

Now, consider the 3 sequences as independent and can be applied in parallel. We apply the sequences over
the vector of data (D), and when all are finished, apply the sequence obtained with the last position of the
sub sequences. And all is done

See this example:

The data vector is
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

100 140 70 60 90 00 160 80 50 130 150 20 170 10 110 30 120 40

Apply this sequence

5 8 7 2 11 14

The new data vector is
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

100 140 20 60 90 50 160 70 80 130 150 110 170 10 00 30 120 40

Apply this sequence

1 13 9 4 17 12

The new data vector is
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

100 10 20 60 40 50 160 70 80 90 150 110 140 130 00 30 120 170

Apply this sequence

16 6 3 15 10 0

The new data vector is
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

120 10 20 30 40 50 60 70 80 90 100 110 140 130 00 150 160 170

These 3 sub sequences can be done in parallel, because don't have any shared element.
Finally,  when the  subsequences are  been  applied,  we  apply  the  last  sequence,  obtained  with  the  last
positions of the sub sequences

14 12 0

The new data vector is fully sorted

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

00 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
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3.- BENCHMARKS

3.1.- INTRODUC  T  ION

To benchmark this we use  the implementation proposed for the Boost Sort Parallel Library. It's pending of 
the final approval, due this can suffer some changes until the final version and definitive approval in the 
boost library. You can find in https  ://  github  .  com  /  fjtapia  /  sort  _  parallel.

If you want run the benchmarks in your machine, you can find the code, instructions and procedures in 
https  ://  github  .  com  /  fjtapia  /  sort  _  parallel  _  benchmark

For the comparison, we use these parallel algorithms:

1. GCC Parallel Sort
2. Intel TBB Parallel Sort
3. Block Indirect Sort

3.2.- DESCRIPTION

The benchmark are running in  a  machine with a I7 5820 3.3 GHz 6 cores,  12 threads,  quad channel
memory (2133 MHz) with Ubuntu and the GCC 5.2 compiler

The compiler used was the GCC 5.2  64 bits

The benchmark have 3 parts:

1.- Sort of 100000000 uint64_t numbers randomly generated. The utility of this benchmark is to see the 
speed with small elements with a very fast comparison.

2.- Sort of 10000000 of strings randomly filled. The comparison is no so easy as the integers.

3.- Sort of objects of several sizes. The objects are arrays of 64 bits numbers, randomly filled. We will check 
with arrays of 1 , 2 , 4, 8, 16, 32 and 64 numbers. 

Definition 
of the object

Bytes Number of  
elements to sort 

 uint64_t [1] 8 100 000 000 

 uint64_t [2] 16 50 000 000 

 uint64_t [4] 32 25 000 000 

 uint64_t [8] 64 12 500 000 

 uint64_t [16] 128 6 250 000 

 uint64_t [32] 256 3 125 000 

 uint64_t [64] 512 1 562 500 

The C++ definition of the objects is 

template <uint32_t NN>
struct int_array
{   uint64_t M[NN];
};

The comparison between objects can be of two ways:

• Heavy comparison : The comparison is done with the sum of all the numbers of the array. In 

each comparison, make the sum. 
• Light comparison : It's done using only the first number of the array, as a key in a register. 
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3.3.- LINUX 64 GCC 5.2 Benchmarks

The benchmark are running in a I7 5820 3.3 GHz 6 cores, 12 threads, quad channel memory (2133 MHz) 
with Ubuntu and the GCC 5.2 compiler.

3.3.1.-SINGLE THREAD ALGORITHMS

The algorithms involved in this benchmark are :

Stable Memory used Comments

GCC sort no N + Log N

boost sort no N + Log N

GCC stable_sort yes N + N / 2 

Boost stable_sort yes N + N / 2 

Boost spreadsort yes N + Log N
Extremely fast algorithm, only for integers, floats 
and strings

INTEGER BENCHMARKS  Sort of 100000000 64 bits numbers, randomly filled 

 Time Memory 

 GCC sort 8.33 secs 784 MB

 Boost sort 8.11 secs 784 MB

 GCC stable sort 8.69 secs 1176 MB

 Boost stable sort 8.75 secs 1175 MB

 Boost Spreadsort 4.33 secs 784 MB

STRINGS BENCHMARKS  Sort of 10 000 000 strings randomly filled

 Time Memory 

 GCC sort 6.39 secs 820 MB

 Boost sort 7.01 secs 820 MB

 GCC stable sort 12.99 secs 1132 MB

 Boost stable sort 9.17 secs 976 MB

 Boost Spreadsort 2.44 secs 820 MB

OBJECTS BENCHMARKS  Sorting of objects of different sizes. The objects are arrays of 64 bits numbers. 
This benchmark is done using two kinds of comparison.

Heavy comparison : The comparison is done with the sum of all the numbers of the array. In each 
comparison, make the sum.

8 
bytes

16 
bytes

32 
bytes

 64 
bytes

 128 
bytes

256 
bytes

512 
bytes

Memory 
used

GCC sort 8.75 4.49 3.03 1.97 1.71 1.37 1.17 783 MB

Boost sort 8.19 4.42 2.65 1.91 1.67 1.35 1.09 783 MB

GCC stable_sort 10.23 5.67 3.67 2.94 2.6 2.49 2.34 1174 MB

Boost stable_sort 8.85 5.11 3.18 2.41 2.01 1.86 1.60 1174 MB
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Light comparison : It's done using only the first number of the array, as a key in a register.

8 
bytes

16 
bytes

32 
bytes

64 
bytes

 128 
bytes

256 
bytes

512 
bytes

Memory 
used

GCC sort 8.69 4.31 2.35 1.50 1.23 0.86 0.79 783 MB

Boost sort 8.18 4.04 2.25 1.45 1.24 0.88 0.76 783 MB

GCC stable_sort 10.34 5.26 3.20 2.57 2.47 2.41 2.30 1174 MB

Boost stable_sort 8.92 4.59 2.51 1.94 1.68 1.68 1.50 1174 MB

3.3.2.-PARALLEL ALGORITHMS

The algorithms involved in this benchmark are :

Stable Memory used  Comments

GCC parallel sort No 2N Based on OpenMP

TBB parallel sort No N + LogN

Boost parallel sort No N +block_size*num threads New parallel algorithm

GCC parallel stable sort Yes 2 N Based on OpenMP

Boost parallel stable sort Yes N / 2 

Boost sample sort Yes N

TBB parallel stable sort Yes N Experimental code, not in the TBB official

The block_size is  an internal  parameter  of  the algorithm,  which in  order  to achieve the highest  speed,
change according the size of the objects to sort according to the next table. The strings use a block_size of
128.

object size (bytes) 1 - 15 16 - 31 32 - 63 64 - 127 128 - 255 256 - 511 512 - 

block_size 4096 2048 1024 768 512 256 128

For the benchmark I use the next additional code:

• Threading Building Blocks ( TBB) 

• OpenMP 

• Threading Building Block experimental code (

https://software.intel.com/sites/default/files/managed/48/9b/parallel_stable_sort.zip ) 

The most significant of this parallel benchmark is the comparison between the Parallel Sort algorithms. GCC
parallel sort is extremely fast with many cores, but need an auxiliary memory of the same size then the data.
In the other side Threading Building Blocks (TBB), is not so fast with many cores , but the auxiliary memory
is LogN.

The Boost Parallel Sort (internally named Block Indirect Sort), is a new algorithm created and implemented
by  the  author  for  this  library,  which  combine  the  speed  of  GCC  Parallel  sort,  with  a  small  memory
consumption (block_size elements for each thread). The worst case for this algorithm is when have very big
elements and many threads. With big elements (512 bytes), and 12 threads, The memory measured was:

GCC Parallel Sort (OpenMP) 1565 MB

Threading Building Blocks (TBB) 783 MB
Block Indirect Sort 812 MB

In machines with a small number of HW threads, TBB is faster than GCC, but with a great number of HW
threads GCC is more faster than TBB. Boost Parallel Sort have similar speed than GCC Parallel Sort with a
great number of HW threads, and similar speed to TBB with a small number. 
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INTEGER BENCHMARKS Sort of 100 000 000 64 bits numbers, randomly filled

time 
( secs)

memory 
(MB) 

OMP parallel_sort 1,25 1560

TBB parallel_sort 1,64 783

Boost parallel_sort 1,08 786

OMP parallel_stable_sort 1,56 1948

TBB parallel_stable_sort 1,56 1561

Boost sample_sort 1,19 1565

Boost parallel_stable_sort 1,54 1174

STRING BENCHMARK Sort of 10000000 strings randomly filled

time 
(secs)

memory 
(MB) 

OMP parallel_sort 1,49 2040

TBB parallel_sort 1,84 820

Boost parallel_sort 1,3 822

OMP parallel_stable_sort 2,25 2040

TBB parallel_stable_sort 2,1 1131

Boost sample_sort 1,51 1134

Boost 
parallel_stable_sort

2,1 977

OBJECT BENCHMARKS  Sorting of objects of different sizes. The objects are arrays of 64 bits number. 
This benchmark is done using two kinds of comparison.

Heavy comparison : The comparison is done with the sum of all the numbers of the array. In each 
comparison, make the sum.

8 
bytes

16 
bytes

32 
bytes

64 
bytes

128 
bytes

256 
bytes

512 
bytes

Memory
Used

OMP parallel_sort 1,27 0,72 0,56 0,45 0,41 0,39 0,32 1565

TBB parallel_sort 1,63 0,8 0,56 0,5 0,44 0,39 0,32 783

Boost parallel_sort 1,13 0,67 0,53 0,47 0,43 0,41 0,34 812

OMP 
parallel_stable_sort

1,62 1,38 1,23 1,19 1,09 1,07 0,97 1954

TBB 
parallel_stable_sort

1,58 1,02 0,81 0,76 0,73 0,73 0,71 1566

Boost sample_sort 1,15 0,79 0,63 0,62 0,62 0,61 0,6 1566

Boost 
parallel_stable_sort

1,58 1,02 0,8 0,76 0,73 0,73 0,71 1175
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Light comparison : It's done using only the first number of the array, as a key in a register.

8 
bytes

16 
bytes

32 
bytes

64 
bytes

128 
bytes

256 
bytes

512 
bytes

Memory
used 

OMP parallel_sort 1,24 0,71 0,48 0,41 0,38 0,35 0,32 1565

TBB parallel_sort 1,66 0,8 0,52 0,43 0,4 0,35 0,32 783

Boost parallel_sort 1,11 0,65 0,49 0,43 0,41 0,37 0,34 812

OMP 
parallel_stable_sort

1,55 1,36 1,23 1,18 1,09 1,07 0,97 1954

TBB 
parallel_stable_sort

1,58 0,91 0,75 0,72 0,71 0,72 0,71 1566

Boost 
parallel_stable_sort

1,16 0,74 0,63 0,62 0,61 0,61 0,6 1566

Boost sample_sort 1,56 0,91 0,75 0,72 0,72 0,72 0,71 1175

3.4.- WINDOWS 10 VISUAL STUDIO 2015 x64 Benchmarks

The benchmark are running in a virtual machine with Windows 10 and 10 threads over a I7 5820 3.3 GHz 
with Visual Studio 2015 C++ compiler.

3.4.1.-SINGLE THREAD ALGORITHMS 

The algorithms involved in this benchmark are :

Stable Memory used Comments

std::sort no N + Log N

boost sort no N + Log N

std::stable_sort yes N + N / 2 

Boost stable_sort yes N + N / 2 

Boost spreadsort yes N + Log N Extremely fast algorithm, only for integers, floats and 
strings

INTEGER BENCHMARKS  Sort of 100000000 64 bits numbers, randomly filled 

Time
(secs)

Memory
(MB)

std::sort 13 763

Boost sort 10,74 763

std::stable_sort 14,94 1144

Boost stable_sort 13,37 1144

Boost spreadsort 9,58 763

STRING BENCHMARKS Sort of 10 000 000 strings randomly filled

Time
(secs)

Memory
(MB)

std::sort 13,3 862

Boost sort 13,6 862

std::stable_sort 26,99 1015

Boost stable_sort 20,64 1015

Boost spreadsort 5,7 862
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OBJECTS BENCHMARK  Sorting of objects of different sizes. The objects are arrays of 64 bits numbers. 
This benchmark is done using two kinds of comparison.

Heavy comparison : The comparison is done with the sum of all the numbers of the array. In each 
comparison, make the sum.

8 
bytes

16 
bytes

32 
bytes

64 
bytes

128 
bytes

256 
bytes

512 
bytes

Memory
used

std::sort 13,36 6,98 4,2 2,58 2,87 2,37 2,29 763

Boost sort 10,54 5,61 3,26 2,72 2,45 1,76 1,73 763

std::stable_sort 15,49 8,47 5,47 3,97 3,85 3,55 2,99 1144

Boost stable_sort 13,11 8,86 5,06 4,16 3,9 3,06 3,32 1144

Light comparison : It's done using only the first number of the array, as a key in a register.

8 
bytes

16 
bytes

32 
bytes

64 
bytes

128 
bytes

256 
bytes

512 
bytes

Memory
used

std::sort 14,15 7,26 4,33 2,69 1,92 1,98 1,73 763

Boost sort 10,33 5 2,99 1,85 1,53 1,46 1,4 763

std::stable_sort 14,68 7,64 4,29 3,33 3,22 2,86 3,08 1144

Boost stable_sort 13,59 8,36 4,45 3,73 3,16 2,81 2,6 1144

3.4.2.-PARALLEL ALGORITHMS

The algorithms involved in this benchmark are :

Stable Memory used  Comments

PPL parallel sort No N

PPL parallel buffered sort No 2 N

Boost parallel sort No N +block_size*num threads New parallel algorithm

Boost parallel stable sort Yes N + N / 2 

Boost sample sort Yes 2 N

The block_size is an internal parameter of the algorithm, which in order to achieve the highest speed, 
change according the size of the objects to sort according to the next table. The strings use a block_size of 
128.

object size (bytes) 1 - 15 16 - 31 32 - 63 64 - 127 128 - 255 256 - 511 512 - 

block_size 4096 2048 1024 768 512 256 128

INTEGER BENCHMARKS Sort of 100 000 000 64 bits numbers, randomly filled

Time
(secs)

Memory
(MB)

PPL parallel sort 3,11 764

PPL parallel buffered sort 1,74 1527

Boost parallel sort 2,1 764

Boost sample sort 2,78 1511

Boost parallel stable sort 3,3 1145
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STRINGS BENCHMARK Sort of 10000000 strings randomly filled

Time
(secs)

Memory
(MB)

PPL parallel sort 3,76 864

PPL parallel buffered sort 3,77 1169

Boost parallel sort 3,41 866

Boost sample sort 3,74 1168

Boost parallel stable sort 5,7 1015

OBJECTS BENCHMARKS  Sorting of objects of different sizes. The objects are arrays of 64 bits number. 
This benchmark is done using two kinds of comparison.

Heavy comparison : The comparison is done with the sum of all the numbers of the array. In each 
comparison, make the sum.

8 
bytes

16 
bytes

32 
bytes

64 
bytes

128 
bytes

256 
bytes

512 
bytes

Memory
used

PPL parallel sort 2,84 1,71 1,01 0,84 0,89 0,77 0,65 764

PPL parallel 
buffered sort

2,2 1,29 2 0,88 0,98 1,32 0,82 1527

Boost parallel sort 1,93 0,82 0,9 0,72 0,77 0,68 0,69 764

Boost sample sort 3,02 2,03 2,15 1,41 1,55 1,82 1,39 1526

Boost parallel 
stable sort

3,36 2,67 1,62 1,45 1,38 1,19 1,37 1145

Light comparison : It's done using only the first number of the array, as a key in a register.

8 
bytes

16 
bytes

32 
bytes

64 
bytes

128 
bytes

256 
bytes

512 
bytes

Memory
used

PPL parallel sort 3,1 1,37 0,97 0,7 0,61 0,58 0,57 764

PPL parallel 
buffered sort

2,31 1,39 0,9 0,88 1,1 0,89 1,44 1527

Boost parallel sort 2,15 1,21 0,7 0,72 0,41 0,51 0,54 764

Boost sample sort 3,4 1,94 1,56 1,41 2 1,41 1,96 1526

Boost parallel 
stable sort

3,56 2,37 1,79 1,45 1,72 1,34 1,44 1145
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