...one of the most highly
regarded and expertly designed C++ library projects in the
world.
— Herb Sutter and Andrei
Alexandrescu, C++
Coding Standards
boost::lockfree::queue
// In header: <boost/lockfree/queue.hpp> template<typename T, typename ... Options> class queue { public: // types typedef T value_type; typedef implementation_defined::allocator allocator; typedef implementation_defined::size_type size_type; // construct/copy/destruct queue(void); template<typename U> explicit queue(unspecified); explicit queue(allocator const &); explicit queue(size_type); template<typename U> queue(size_type, unspecified); ~queue(void); // public member functions bool is_lock_free(void) const; void reserve(size_type); void reserve_unsafe(size_type); bool empty(void) const; bool push(T const &); bool bounded_push(T const &); bool unsynchronized_push(T const &); bool pop(T &); template<typename U> bool pop(U &); bool unsynchronized_pop(T &); template<typename U> bool unsynchronized_pop(U &); template<typename Functor> bool consume_one(Functor &); template<typename Functor> bool consume_one(Functor const &); template<typename Functor> size_t consume_all(Functor &); template<typename Functor> size_t consume_all(Functor const &); };
The queue class provides a multi-writer/multi-reader queue, pushing and popping is lock-free, construction/destruction has to be synchronized. It uses a freelist for memory management, freed nodes are pushed to the freelist and not returned to the OS before the queue is destroyed.
Policies:
boost::lockfree::fixed_sized, defaults to boost::lockfree::fixed_sized<false>
Can be used to completely disable dynamic memory allocations during push in order to ensure lockfree behavior.
If the data structure is configured as fixed-sized, the internal nodes are stored inside an array and they are addressed by array indexing. This limits the possible size of the queue to the number of elements that can be addressed by the index type (usually 2**16-2), but on platforms that lack double-width compare-and-exchange instructions, this is the best way to achieve lock-freedom.
boost::lockfree::capacity, optional
If this template argument is passed to the options, the size of the queue is set at compile-time.
This option implies fixed_sized<true>
boost::lockfree::allocator, defaults to boost::lockfree::allocator<std::allocator<void>>
Specifies the allocator that is used for the internal freelist
Requirements:
T must have a copy constructor
T must have a trivial assignment operator
T must have a trivial destructor
queue
public
construct/copy/destructqueue(void);Construct queue.
template<typename U> explicit queue(unspecified alloc);
explicit queue(allocator const & alloc);
explicit queue(size_type n);Construct queue, allocate n nodes for the freelist.
template<typename U> queue(size_type n, unspecified alloc);
~queue(void);
Destroys queue, free all nodes from freelist.
queue
public member functionsbool is_lock_free(void) const;
Warning | |
---|---|
It only checks, if the queue head and tail nodes and the freelist can be modified in a lock-free manner. On most platforms, the whole implementation is lock-free, if this is true. Using c++0x-style atomics, there is no possibility to provide a completely accurate implementation, because one would need to test every internal node, which is impossible if further nodes will be allocated from the operating system. |
Returns: |
true, if implementation is lock-free. |
void reserve(size_type n);
void reserve_unsafe(size_type n);
bool empty(void) const;
Check if the queue is empty
Note | |
---|---|
The result is only accurate, if no other thread modifies the queue. Therefore it is rarely practical to use this value in program logic. |
Returns: |
true, if the queue is empty, false otherwise |
bool push(T const & t);
Pushes object t to the queue.
Note | |
---|---|
Thread-safe. If internal memory pool is exhausted and the memory pool is not fixed-sized, a new node will be allocated from the OS. This may not be lock-free. |
Postconditions: |
object will be pushed to the queue, if internal node can be allocated |
Returns: |
true, if the push operation is successful. |
bool bounded_push(T const & t);
Pushes object t to the queue.
Note | |
---|---|
Thread-safe and non-blocking. If internal memory pool is exhausted, operation will fail |
Postconditions: |
object will be pushed to the queue, if internal node can be allocated |
Returns: |
true, if the push operation is successful. |
Throws: |
if memory allocator throws |
bool unsynchronized_push(T const & t);
Pushes object t to the queue.
Note | |
---|---|
Not Thread-safe. If internal memory pool is exhausted and the memory pool is not fixed-sized, a new node will be allocated from the OS. This may not be lock-free. |
Postconditions: |
object will be pushed to the queue, if internal node can be allocated |
Returns: |
true, if the push operation is successful. |
Throws: |
if memory allocator throws |
bool pop(T & ret);
Pops object from queue.
Note | |
---|---|
Thread-safe and non-blocking |
Postconditions: |
if pop operation is successful, object will be copied to ret. |
Returns: |
true, if the pop operation is successful, false if queue was empty. |
template<typename U> bool pop(U & ret);
Pops object from queue.
Note | |
---|---|
Thread-safe and non-blocking |
Requires: |
type U must be constructible by T and copyable, or T must be convertible to U |
Postconditions: |
if pop operation is successful, object will be copied to ret. |
Returns: |
true, if the pop operation is successful, false if queue was empty. |
bool unsynchronized_pop(T & ret);
Pops object from queue.
Note | |
---|---|
Not thread-safe, but non-blocking |
Postconditions: |
if pop operation is successful, object will be copied to ret. |
Returns: |
true, if the pop operation is successful, false if queue was empty. |
template<typename U> bool unsynchronized_pop(U & ret);
Pops object from queue.
Note | |
---|---|
Not thread-safe, but non-blocking |
Requires: |
type U must be constructible by T and copyable, or T must be convertible to U |
Postconditions: |
if pop operation is successful, object will be copied to ret. |
Returns: |
true, if the pop operation is successful, false if queue was empty. |
template<typename Functor> bool consume_one(Functor & f);
consumes one element via a functor
pops one element from the queue and applies the functor on this object
Note | |
---|---|
Thread-safe and non-blocking, if functor is thread-safe and non-blocking |
Returns: |
true, if one element was consumed |
template<typename Functor> bool consume_one(Functor const & f);
consumes one element via a functor
pops one element from the queue and applies the functor on this object
Note | |
---|---|
Thread-safe and non-blocking, if functor is thread-safe and non-blocking |
Returns: |
true, if one element was consumed |
template<typename Functor> size_t consume_all(Functor & f);
consumes all elements via a functor
sequentially pops all elements from the queue and applies the functor on each object
Note | |
---|---|
Thread-safe and non-blocking, if functor is thread-safe and non-blocking |
Returns: |
number of elements that are consumed |
template<typename Functor> size_t consume_all(Functor const & f);
consumes all elements via a functor
sequentially pops all elements from the queue and applies the functor on each object
Note | |
---|---|
Thread-safe and non-blocking, if functor is thread-safe and non-blocking |
Returns: |
number of elements that are consumed |