Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

Click here to view the latest version of this page.
PrevUpHomeNext

User's Guide

Introduction
Installing xpressive
Quick Start
Creating a Regex Object
Matching and Searching
Accessing Results
String Substitutions
String Splitting and Tokenization
Grammars and Nested Matches
Localization and Regex Traits
Tips 'N Tricks
Concepts
Examples

This section describes how to use xpressive to accomplish text manipulation and parsing tasks. If you are looking for detailed information regarding specific components in xpressive, check the Reference section.

Introduction

What is xpressive?

xpressive is an object-oriented regular expression library. Regular expressions (regexes) can be written as strings that are parsed dynamically at runtime (dynamic regexes), or as expression templates that are parsed at compile-time (static regexes). Dynamic regexes have the advantage that they can be accepted from the user as input at runtime or read from an initialization file. Static regexes have several advantages. Since they are C++ expressions instead of strings, they can be syntax-checked at compile-time. Also, they can refer to other regexes and to themselves, giving static regexes the power of context-free grammars. Finally, since they are statically bound, the compiler can generate faster code for static regexes.

xpressive's dual nature is unique and powerful. Static xpressive is a bit like the Spirit Parser Framework. Like Spirit, you can build grammars with static regexes using expression templates. (Unlike Spirit, xpressive does exhaustive backtracking, trying every possibility to find a match for your pattern.) Dynamic xpressive is a bit like Boost.Regex. In fact, xpressive's interface should be familiar to anyone who has used Boost.Regex. xpressive's innovation comes from allowing you to mix and match static and dynamic regexes in the same program, and even in the same expression! You can embed a dynamic regex in a static regex, and the dynamic regex will participate fully in the search, back-tracking as needed to make the match succeed.

Hello, world!

Enough theory. Let's have a look at Hello World, xpressive style:

#include <iostream>
#include <boost/xpressive/xpressive.hpp>

using namespace boost::xpressive;

int main()
{
    std::string hello( "hello world!" );

    sregex rex = sregex::compile( "(\\w+) (\\w+)!" );
    smatch what;

    if( regex_match( hello, what, rex ) )
    {
        std::cout << what[0] << '\n'; // whole match
        std::cout << what[1] << '\n'; // first capture
        std::cout << what[2] << '\n'; // second capture
    }

    return 0;
}

This program outputs the following:

hello world!
hello
world

The first thing you'll notice about the code is that all the types in xpressive live in the boost::xpressive namespace.

[Note] Note

Most of the rest of the examples in this document will leave off the usingnamespaceboost::xpressive; directive. Just pretend it's there.

Next, you'll notice the type of the regular expression object is sregex. If you are familiar with Boost.Regex, this is different than what you are used to. The "s" in "sregex" stands for "string", indicating that this regex can be used to find patterns in std::string objects. I'll discuss this difference and its implications in detail later.

Notice how the regex object is initialized:

sregex rex = sregex::compile( "(\\w+) (\\w+)!" );

To create a regular expression object from a string, you must call a factory method such as basic_regex::compile(). This is another area in which xpressive differs from other object-oriented regular expression libraries. Other libraries encourage you to think of a regular expression as a kind of string on steroids. In xpressive, regular expressions are not strings; they are little programs in a domain-specific language. Strings are only one representation of that language. Another representation is an expression template. For example, the above line of code is equivalent to the following:

sregex rex = (s1= +_w) >> ' ' >> (s2= +_w) >> '!';

This describes the same regular expression, except it uses the domain-specific embedded language defined by static xpressive.

As you can see, static regexes have a syntax that is noticeably different than standard Perl syntax. That is because we are constrained by C++'s syntax. The biggest difference is the use of >> to mean "followed by". For instance, in Perl you can just put sub-expressions next to each other:

abc

But in C++, there must be an operator separating sub-expressions:

a >> b >> c

In Perl, parentheses () have special meaning. They group, but as a side-effect they also create back-references like $1 and $2. In C++, there is no way to overload parentheses to give them side-effects. To get the same effect, we use the special s1, s2, etc. tokens. Assign to one to create a back-reference (known as a sub-match in xpressive).

You'll also notice that the one-or-more repetition operator + has moved from postfix to prefix position. That's because C++ doesn't have a postfix + operator. So:

"\\w+"

is the same as:

+_w

We'll cover all the other differences later.

Installing xpressive

Getting xpressive

There are two ways to get xpressive. The first is by downloading xpressive.zip at the Boost File Vault in the "Strings - Text Processing" directory. In addition to the source code and the Boost license, this archive contains a copy of this documentation in PDF format.

The second way is through anonymous CVS via the boost project on SourceForge.net. Just go to http://sf.net/projects/boost and follow the instructions there for anonymous CVS access.

Building with xpressive

xpressive is a header-only template library, which means you don't need to alter your build scripts or link to any separate lib file to use it. All you need to do is #include<boost/xpressive/xpressive.hpp>. If you are only using static regexes, you can improve compile times by only including xpressive_static.hpp. Likewise, you can include xpressive_dynamic.hpp if you only plan on using dynamic regexes.

Requirements

xpressive depends on Boost. You can download the latest version of the Boost libraries from http://boost.org. xpressive requires Boost version 1.32 or higher.

Supported Compilers

Currently, Boost.Xpressive is known to work on the following compilers:

  • Visual C++ 7.1 and higher
  • GNU C++ 3.2 and higher
  • Intel for Linux 8.1 and higher
  • Intel for Windows 8.1 and higher
  • tru64cxx 65 and higher
  • QNX qcc 3.3 and higher
  • MinGW 3.4 and higher
  • Metrowerks CodeWarrior 9.4 and higher

Check the latest tests results at Boost's Regression Results Page.

[Note] Note

Please send any questions, comments and bug reports to eric <at> boost-consulting <dot> com.

Quick Start

You don't need to know much to start being productive with xpressive. Let's begin with the nickel tour of the types and algorithms xpressive provides.

xpressive's Tool-Box

Tool Description
basic_regex<> Contains a compiled regular expression. basic_regex<> is the most important type in xpressive. Everything you do with xpressive will begin with creating an object of type basic_regex<>.
match_results<>, sub_match<> match_results<> contains the results of a regex_match() or regex_search() operation. It acts like a vector of sub_match<> objects. A sub_match<> object contains a marked sub-expression (also known as a back-reference in Perl). It is basically just a pair of iterators representing the begin and end of the marked sub-expression.
regex_match() Checks to see if a string matches a regex. For regex_match() to succeed, the whole string must match the regex, from beginning to end. If you give regex_match() a match_results<>, it will write into it any marked sub-expressions it finds.
regex_search() Searches a string to find a sub-string that matches the regex. regex_search() will try to find a match at every position in the string, starting at the beginning, and stopping when it finds a match or when the string is exhausted. As with regex_match(), if you give regex_search() a match_results<>, it will write into it any marked sub-expressions it finds.
regex_replace() Given an input string, a regex, and a substitution string, regex_replace() builds a new string by replacing those parts of the input string that match the regex with the substitution string. The substitution string can contain references to marked sub-expressions.
regex_iterator<> An STL-compatible iterator that makes it easy to find all the places in a string that match a regex. Dereferencing a regex_iterator<> returns a match_results<>. Incrementing a regex_iterator<> finds the next match.
regex_token_iterator<> Like regex_iterator<>, except dereferencing a regex_token_iterator<> returns a string. By default, it will return the whole sub-string that the regex matched, but it can be configured to return any or all of the marked sub-expressions one at a time, or even the parts of the string that didn't match the regex.
regex_compiler<> A factory for basic_regex<> objects. It "compiles" a string into a regular expression. You will not usually have to deal directly with regex_compiler<> because the basic_regex<> class has a factory method that uses regex_compiler<> internally. But if you need to do anything fancy like create a basic_regex<> object with a different std::locale, you will need to use a regex_compiler<> explicitly.

Now that you know a bit about the tools xpressive provides, you can pick the right tool for you by answering the following two questions:

  1. What iterator type will you use to traverse your data?
  2. What do you want to do to your data?

Know Your Iterator Type

Most of the classes in xpressive are templates that are parameterized on the iterator type. xpressive defines some common typedefs to make the job of choosing the right types easier. You can use the table below to find the right types based on the type of your iterator.

xpressive Typedefs vs. Iterator Types

std::string::const_iterator char const * std::wstring::const_iterator wchar_t const *
basic_regex<> sregex cregex wsregex wcregex
match_results<> smatch cmatch wsmatch wcmatch
regex_compiler<> sregex_compiler cregex_compiler wsregex_compiler wcregex_compiler
regex_iterator<> sregex_iterator cregex_iterator wsregex_iterator wcregex_iterator
regex_token_iterator<> sregex_token_iterator cregex_token_iterator wsregex_token_iterator wcregex_token_iterator

You should notice the systematic naming convention. Many of these types are used together, so the naming convention helps you to use them consistently. For instance, if you have a sregex, you should also be using a smatch.

If you are not using one of those four iterator types, then you can use the templates directly and specify your iterator type.

Know Your Task

Do you want to find a pattern once? Many times? Search and replace? xpressive has tools for all that and more. Below is a quick reference:

These algorithms and classes are described in excruciating detail in the Reference section.

[Tip] Tip

Try clicking on a task in the table above to see a complete example program that uses xpressive to solve that particular task.

Creating a Regex Object

When using xpressive, the first thing you'll do is create a basic_regex<> object. This section goes over the nuts and bolts of building a regular expression in the two dialects xpressive supports: static and dynamic.

Static Regexes

Overview

The feature that really sets xpressive apart from other C/C++ regular expression libraries is the ability to author a regular expression using C++ expressions. xpressive achieves this through operator overloading, using a technique called expression templates to embed a mini-language dedicated to pattern matching within C++. These "static regexes" have many advantages over their string-based brethren. In particular, static regexes:

  • are syntax-checked at compile-time; they will never fail at run-time due to a syntax error.
  • can naturally refer to other C++ data and code, including other regexes, making it possible to build grammars out of regular expressions and bind user-defined actions that execute when parts of your regex match.
  • are statically bound for better inlining and optimization. Static regexes require no state tables, virtual functions, byte-code or calls through function pointers that cannot be resolved at compile time.
  • are not limited to searching for patterns in strings. You can declare a static regex that finds patterns in an array of integers, for instance.

Since we compose static regexes using C++ expressions, we are constrained by the rules for legal C++ expressions. Unfortunately, that means that "classic" regular expression syntax cannot always be mapped cleanly into C++. Rather, we map the regex constructs, picking new syntax that is legal C++.

Construction and Assignment

You create a static regex by assigning one to an object of type basic_regex<>. For instance, the following defines a regex that can be used to find patterns in objects of type std::string:

sregex re = '$' >> +_d >> '.' >> _d >> _d;

Assignment works similarly.

Character and String Literals

In static regexes, character and string literals match themselves. For instance, in the regex above, '$' and '.' match the characters '$' and '.' respectively. Don't be confused by the fact that $ and . are meta-characters in Perl. In xpressive, literals always represent themselves.

When using literals in static regexes, you must take care that at least one operand is not a literal. For instance, the following are not valid regexes:

sregex re1 = 'a' >> 'b';         // ERROR!
sregex re2 = +'a';               // ERROR!

The two operands to the binary >> operator are both literals, and the operand of the unary + operator is also a literal, so these statements will call the native C++ binary right-shift and unary plus operators, respectively. That's not what we want. To get operator overloading to kick in, at least one operand must be a user-defined type. We can use xpressive's as_xpr() helper function to "taint" an expression with regex-ness, forcing operator overloading to find the correct operators. The two regexes above should be written as:

sregex re1 = as_xpr('a') >> 'b'; // OK
sregex re2 = +as_xpr('a');       // OK

Sequencing and Alternation

As you've probably already noticed, sub-expressions in static regexes must be separated by the sequencing operator, >>. You can read this operator as "followed by".

// Match an 'a' followed by a digit
sregex re = 'a' >> _d;

Alternation works just as it does in Perl with the | operator. You can read this operator as "or". For example:

// match a digit character or a word character one or more times
sregex re = +( _d | _w );

Grouping and Captures

In Perl, parentheses () have special meaning. They group, but as a side-effect they also create back-references like $1 and $2. In C++, parentheses only group -- there is no way to give them side-effects. To get the same effect, we use the special s1, s2, etc. tokens. Assigning to one creates a back-reference. You can then use the back-reference later in your expression, like using \1 and \2 in Perl. For example, consider the following regex, which finds matching HTML tags:

"<(\\w+)>.*?</\\1>"

In static xpressive, this would be:

'<' >> (s1= +_w) >> '>' >> -*_ >> "</" >> s1 >> '>'

Notice how you capture a back-reference by assigning to s1, and then you use s1 later in the pattern to find the matching end tag.

[Tip] Tip

Grouping without capturing a back-reference

In xpressive, if you just want grouping without capturing a back-reference, you can just use () without s1. That is the equivalent of Perl's (?:) non-capturing grouping construct.

Case-Insensitivity and Internationalization

Perl lets you make part of your regular expression case-insensitive by using the (?i:) pattern modifier. xpressive also has a case-insensitivity pattern modifier, called icase. You can use it as follows:

sregex re = "this" >> icase( "that" );

In this regular expression, "this" will be matched exactly, but "that" will be matched irrespective of case.

Case-insensitive regular expressions raise the issue of internationalization: how should case-insensitive character comparisons be evaluated? Also, many character classes are locale-specific. Which characters are matched by digit and which are matched by alpha? The answer depends on the std::locale object the regular expression object is using. By default, all regular expression objects use the global locale. You can override the default by using the imbue() pattern modifier, as follows:

std::locale my_locale = /* initialize a std::locale object */;
sregex re = imbue( my_locale )( +alpha >> +digit );

This regular expression will evaluate alpha and digit according to my_locale. See the section on Localization and Regex Traits for more information about how to customize the behavior of your regexes.

Static xpressive Syntax Cheat Sheet

The table below lists the familiar regex constructs and their equivalents in static xpressive.

Perl syntax vs. Static xpressive syntax

Perl Static xpressive Meaning
. _ any character (assuming Perl's /s modifier).
ab a>>b sequencing of a and b sub-expressions.
a|b a|b alternation of a and b sub-expressions.
(a) (s1=a) group and capture a back-reference.
(?:a) (a) group and do not capture a back-reference.
\1 s1 a previously captured back-reference.
a* *a zero or more times, greedy.
a+ +a one or more times, greedy.
a? !a zero or one time, greedy.
a{n,m} repeat<n,m>(a) between n and m times, greedy.
a*? -*a zero or more times, non-greedy.
a+? -+a one or more times, non-greedy.
a?? -!a zero or one time, non-greedy.
a{n,m}? -repeat<n,m>(a) between n and m times, non-greedy.
^ bos beginning of sequence assertion.
$ eos end of sequence assertion.
\b _b word boundary assertion.
\B ~_b not word boundary assertion.
\n _n literal newline.
. ~_n any character except a literal newline (without Perl's /s modifier).
\r?\n|\r _ln logical newline.
[^\r\n] ~_ln any single character not a logical newline.
\w _w a word character, equivalent to set[alnum | '_'].
\W ~_w not a word character, equivalent to ~set[alnum | '_'].
\d _d a digit character.
\D ~_d not a digit character.
\s _s a space character.
\S ~_s not a space character.
[:alnum:] alnum an alpha-numeric character.
[:alpha:] alpha an alphabetic character.
[:blank:] blank a horizontal white-space character.
[:cntrl:] cntrl a control character.
[:digit:] digit a digit character.
[:graph:] graph a graphable character.
[:lower:] lower a lower-case character.
[:print:] print a printing character.
[:punct:] punct a punctuation character.
[:space:] space a white-space character.
[:upper:] upper an upper-case character.
[:xdigit:] xdigit a hexadecimal digit character.
[0-9] range('0','9') characters in range '0' through '9'.
[abc] as_xpr('a')|'b'|'c' characters 'a', 'b', or 'c'.
[abc] (set='a','b','c') same as above
[0-9abc] set[range('0','9')|'a'|'b'|'c'] characters 'a', 'b', 'c' or in range '0' through '9'.
[0-9abc] set[range('0','9')|(set='a','b','c')] same as above
[^abc] ~(set='a','b','c') not characters 'a', 'b', or 'c'.
(?i:stuff) icase(stuff) match stuff disregarding case.
(?>stuff) keep(stuff) independent sub-expression, match stuff and turn off backtracking.
(?=stuff) before(stuff) positive look-ahead assertion, match if before stuff but don't include stuff in the match.
(?!stuff) ~before(stuff) negative look-ahead assertion, match if not before stuff.
(?<=stuff) after(stuff) positive look-behind assertion, match if after stuff but don't include stuff in the match. (stuff must be constant-width.)
(?<!stuff) ~after(stuff) negative look-behind assertion, match if not after stuff. (stuff must be constant-width.)


Dynamic Regexes

Overview

Static regexes are dandy, but sometimes you need something a bit more ... dynamic. Imagine you are developing a text editor with a regex search/replace feature. You need to accept a regular expression from the end user as input at run-time. There should be a way to parse a string into a regular expression. That's what xpressive's dynamic regexes are for. They are built from the same core components as their static counterparts, but they are late-bound so you can specify them at run-time.

Construction and Assignment

There are two ways to create a dynamic regex: with the basic_regex::compile() function or with the regex_compiler<> class template. Use basic_regex::compile() if you want the default locale, syntax and semantics. Use regex_compiler<> if you need to specify a different locale, or if you need more control over the regex syntax and semantics than the syntax_option_type enumeration gives you. (Editor's note: in xpressive v1.0, regex_compiler<> does not support customization of the dynamic regex syntax and semantics. It will in v2.0.)

Here is an example of using basic_regex<>::compile():

sregex re = sregex::compile( "this|that", regex_constants::icase );

Here is the same example using regex_compiler<>:

sregex_compiler compiler;
sregex re = compiler.compile( "this|that", regex_constants::icase );

basic_regex::compile() is implemented in terms of regex_compiler<>.

Dynamic xpressive Syntax

Since the dynamic syntax is not constrained by the rules for valid C++ expressions, we are free to use familiar syntax for dynamic regexes. For this reason, the syntax used by xpressive for dynamic regexes follows the lead set by John Maddock's proposal to add regular expressions to the Standard Library. It is essentially the syntax standardized by ECMAScript, with minor changes in support of internationalization.

Since the syntax is documented exhaustively elsewhere, I will simply refer you to the existing standards, rather than duplicate the specification here.

Customizing Dynamic xpressive Syntax

xpressive v1.0 has limited support for the customization of dynamic regex syntax. The only customization allowed is what can be specified via the syntax_option_type enumeration.

I have planned some future work in this area for v2.0, however. xpressive's design allows for powerful mechanisms to customize the dynamic regex syntax. First, since the concept of "regex" is separated from the concept of "regex compiler", it will be possible to offer multiple regex compilers, each of which accepts a different syntax. Second, since xpressive allows you to build grammars using static regexes, it should be possible to build a dynamic regex parser out of static regexes! Then, new dynamic regex grammars can be created by cloning an existing regex grammar and modifying or disabling individual grammar rules to suit your needs.

Internationalization

As with static regexes, dynamic regexes support internationalization by allowing you to specify a different std::locale. To do this, you must use regex_compiler<>. The regex_compiler<> class has an imbue() function. After you have imbued a regex_compiler<> object with a custom std::locale, all regex objects compiled by that regex_compiler<> will use that locale. For example:

std::locale my_locale = /* initialize your locale object here */;
sregex_compiler compiler;
compiler.imbue( my_locale );
sregex re = compiler.compile( "\\w+|\\d+" );

This regex will use my_locale when evaluating the intrinsic character sets "\\w" and "\\d".

Matching and Searching

Overview

Once you have created a regex object, you can use the regex_match() and regex_search() algorithms to find patterns in strings. This page covers the basics of regex matching and searching. In all cases, if you are familiar with how regex_match() and regex_search() in the Boost.Regex library work, xpressive's versions work the same way.

Seeing if a String Matches a Regex

The regex_match() algorithm checks to see if a regex matches a given input.

[Warning] Warning

The regex_match() algorithm will only report success if the regex matches the whole input, from beginning to end. If the regex matches only a part of the input, regex_match() will return false. If you want to search through the string looking for sub-strings that the regex matches, use the regex_search() algorithm.

The input can be a std::string, a C-style null-terminated string or a pair of iterators. In all cases, the type of the iterator used to traverse the input sequence must match the iterator type used to declare the regex object. (You can use the table in the Quick Start to find the correct regex type for your iterator.)

cregex cre = +_w;  // this regex can match C-style strings
sregex sre = +_w;  // this regex can match std::strings

if( regex_match( "hello", cre ) )              // OK
    { /*...*/ }

if( regex_match( std::string("hello"), sre ) ) // OK
    { /*...*/ } 

if( regex_match( "hello", sre ) )              // ERROR! iterator mis-match!
    { /*...*/ }

The regex_match() algorithm optionally accepts a match_results<> struct as an out parameter. If given, the regex_match() algorithm fills in the match_results<> struct with information about which parts of the regex matched which parts of the input.

cmatch what;
cregex cre = +(s1= _w);

// store the results of the regex_match in "what"
if( regex_match( "hello", what, cre ) )
{
    std::cout << what[1] << '\n'; // prints "o"
}

The regex_match() algorithm also optionally accepts a match_flag_type bitmask. With match_flag_type, you can control certain aspects of how the match is evaluated. See the match_flag_type reference for a complete list of the flags and their meanings.

std::string str("hello");
sregex sre = bol >> +_w;

// match_not_bol means that "bol" should not match at [begin,begin)
if( regex_match( str.begin(), str.end(), sre, regex_constants::match_not_bol ) )
{
    // should never get here!!!
}

Click here to see a complete example program that shows how to use regex_match(). And check the regex_match() reference to see a complete list of the available overloads.

Searching for Matching Sub-Strings

Use regex_search() when you want to know if an input sequence contains a sub-sequence that a regex matches. regex_search() will try to match the regex at the beginning of the input sequence and scan forward in the sequence until it either finds a match or exhausts the sequence.

In all other regards, regex_search() behaves like regex_match()(see above). In particular, it can operate on std::string, C-style null-terminated strings or iterator ranges. The same care must be taken to ensure that the iterator type of your regex matches the iterator type of your input sequence. As with regex_match(), you can optionally provide a match_results<> struct to receive the results of the search, and a match_flag_type bitmask to control how the match is evaluated.

Click here to see a complete example program that shows how to use regex_search(). And check the regex_search() reference to see a complete list of the available overloads.

Accessing Results

Overview

Sometimes, it is not enough to know simply whether a regex_match() or regex_search() was successful or not. If you pass an object of type match_results<> to regex_match() or regex_search(), then after the algorithm has completed successfully the match_results<> will contain extra information about which parts of the regex matched which parts of the sequence. In Perl, these sub-sequences are called back-references, and they are stored in the variables $1, $2, etc. In xpressive, they are objects of type sub_match<>, and they are stored in the match_results<> structure, which acts as a vector of sub_match<> objects.

match_results

So, you've passed a match_results<> object to a regex algorithm, and the algorithm has succeeded. Now you want to examine the results. Most of what you'll be doing with the match_results<> object is indexing into it to access its internally stored sub_match<> objects, but there are a few other things you can do with a match_results<> object besides.

The table below shows how to access the information stored in a match_results<> object named what.

match_results<> Accessors

Accessor Effects
what.size() Returns the number of sub-matches, which is always greater than zero after a successful match because the full match is stored in the zero-th sub-match.
what[n] Returns the n-th sub-match.
what.length(n) Returns the length of the n-th sub-match. Same as what[n].length().
what.position(n) Returns the offset into the input sequence at which the n-th sub-match begins.
what.str(n) Returns a std::basic_string<> constructed from the n-th sub-match. Same as what[n].str().
what.prefix() Returns a sub_match<> object which represents the sub-sequence from the beginning of the input sequence to the start of the full match.
what.suffix() Returns a sub_match<> object which represents the sub-sequence from the end of the full match to the end of the input sequence.
what.regex_id() Returns the regex_id of the basic_regex<> object that was last used with this match_results<> object.

There is more you can do with the match_results<> object, but that will be covered when we talk about Grammars and Nested Matches.

sub_match

When you index into a match_results<> object, you get back a sub_match<> object. A sub_match<> is basically a pair of iterators. It is defined like this:

template< class BidirectionalIterator >
struct sub_match
    : std::pair< BidirectionalIterator, BidirectionalIterator >
{
    bool matched;
    // ...
};

Since it inherits publicaly from std::pair<>, sub_match<> has first and second data members of type BidirectionalIterator. These are the beginning and end of the sub-sequence this sub_match<> represents. sub_match<> also has a Boolean matched data member, which is true if this sub_match<> participated in the full match.

The following table shows how you might access the information stored in a sub_match<> object called sub.

sub_match<> Accessors

Accessor Effects
sub.length() Returns the length of the sub-match. Same as std::distance(sub.first,sub.second).
sub.str() Returns a std::basic_string<> constructed from the sub-match. Same as std::basic_string<char_type>(sub.first,sub.second).
sub.compare(str) Performs a string comparison between the sub-match and str, where str can be a std::basic_string<>, C-style null-terminated string, or another sub-match. Same as sub.str().compare(str).

caution Results Invalidation caution

Results are stored as iterators into the input sequence. Anything which invalidates the input sequence will invalidate the match results. For instance, if you match a std::string object, the results are only valid until your next call to a non-const member function of that std::string object. After that, the results held by the match_results<> object are invalid. Don't use them!

String Substitutions

Regular expressions are not only good for searching text; they're good at manipulating it. And one of the most common text manipulation tasks is search-and-replace. xpressive provides the regex_replace() algorithm for searching and replacing.

regex_replace()

Performing search-and-replace using regex_replace() is simple. All you need is an input sequence, a regex object, and a format string. There are two versions of the regex_replace() algorithm. The first accepts the input sequence as std::basic_string<> and returns the result in a new std::basic_string<>. The second accepts the input sequence as a pair of iterators, and writes the result into an output iterator. Below are examples of each.

std::string input("This is his face");
sregex re = as_xpr("his");                // find all occurrences of "his" ...
std::string format("her");                // ... and replace them with "her"

// use the version of regex_replace() that operates on strings
std::string output = regex_replace( input, re, format );
std::cout << output << '\n';

// use the version of regex_replace() that operates on iterators
std::ostream_iterator< char > out_iter( std::cout );
regex_replace( out_iter, input.begin(), input.end(), re, format );

The above program prints out the following:

Ther is her face
Ther is her face

Notice that all the occurrences of "his" have been replaced with "her".

Click here to see a complete example program that shows how to use regex_replace(). And check the regex_replace() reference to see a complete list of the available overloads.

The Format String

As with Perl, you can refer to sub-matches in the format string. The table below shows the escape sequences xpressive recognizes in the format string.

Format Escape Sequences

Escape Sequence Meaning
$1 the first sub-match
$2 the second sub-match (etc.)
$& the full match
$` the match prefix
$' the match suffix
$$ a literal '$' character

Any other sequence beginning with '$' simply represents itself. For example, if the format string were "$a" then "$a" would be inserted into the output sequence.

Replace Options

The regex_replace() algorithm takes an optional bitmask parameter to control the formatting. The possible values of the bitmask are:

Format Flags

Flag Meaning
format_first_only Only replace the first match, not all of them.
format_no_copy Don't copy the parts of the input sequence that didn't match the regex to the output sequence.
format_literal Treat the format string as a literal; that is, don't recognize any escape sequences.

These flags live in the regex_constants namespace.

String Splitting and Tokenization

regex_token_iterator<> is the Ginsu knife of the text manipulation world. It slices! It dices! This section describes how to use the highly-configurable regex_token_iterator<> to chop up input sequences.

Overview

You initialize a regex_token_iterator<> with an input sequence, a regex, and some optional configuration parameters. The regex_token_iterator<> will use regex_search() to find the first place in the sequence that the regex matches. When dereferenced, the regex_token_iterator<> returns a token in the form of a std::basic_string<>. Which string it returns depends on the configuration parameters. By default it returns a string corresponding to the full match, but it could also return a string corresponding to a particular marked sub-expression, or even the part of the sequence that didn't match. When you increment the regex_token_iterator<>, it will move to the next token. Which token is next depends on the configuration parameters. It could simply be a different marked sub-expression in the current match, or it could be part or all of the next match. Or it could be the part that didn't match.

As you can see, regex_token_iterator<> can do a lot. That makes it hard to describe, but some examples should make it clear.

Example 1: Simple Tokenization

This example uses regex_token_iterator<> to chop a sequence into a series of tokens consisting of words.

std::string input("This is his face");
sregex re = +_w;                      // find a word

// iterate over all the words in the input
sregex_token_iterator begin( input.begin(), input.end(), re ), end;

// write all the words to std::cout
std::ostream_iterator< std::string > out_iter( std::cout, "\n" );
std::copy( begin, end, out_iter );

This program displays the following:

This
is
his
face

Example 2: Simple Tokenization, Reloaded

This example also uses regex_token_iterator<> to chop a sequence into a series of tokens consisting of words, but it uses the regex as a delimiter. When we pass a -1 as the last parameter to the regex_token_iterator<> constructor, it instructs the token iterator to consider as tokens those parts of the input that didn't match the regex.

std::string input("This is his face");
sregex re = +_s;                      // find white space

// iterate over all non-white space in the input. Note the -1 below:
sregex_token_iterator begin( input.begin(), input.end(), re, -1 ), end;

// write all the words to std::cout
std::ostream_iterator< std::string > out_iter( std::cout, "\n" );
std::copy( begin, end, out_iter );

This program displays the following:

This
is
his
face

Example 3: Simple Tokenization, Revolutions

This example also uses regex_token_iterator<> to chop a sequence containing a bunch of dates into a series of tokens consisting of just the years. When we pass a positive integer N as the last parameter to the regex_token_iterator<> constructor, it instructs the token iterator to consider as tokens only the N-th marked sub-expression of each match.

std::string input("01/02/2003 blahblah 04/23/1999 blahblah 11/13/1981");
sregex re = sregex::compile("(\\d{2})/(\\d{2})/(\\d{4})"); // find a date

// iterate over all the years in the input. Note the 3 below, corresponding to the 3rd sub-expression:
sregex_token_iterator begin( input.begin(), input.end(), re, 3 ), end;

// write all the words to std::cout
std::ostream_iterator< std::string > out_iter( std::cout, "\n" );
std::copy( begin, end, out_iter );

This program displays the following:

2003
1999
1981

Example 4: Not-So-Simple Tokenization

This example is like the previous one, except that instead of tokenizing just the years, this program turns the days, months and years into tokens. When we pass an array of integers {I,J,...} as the last parameter to the regex_token_iterator<> constructor, it instructs the token iterator to consider as tokens the I-th, J-th, etc. marked sub-expression of each match.

std::string input("01/02/2003 blahblah 04/23/1999 blahblah 11/13/1981");
sregex re = sregex::compile("(\\d{2})/(\\d{2})/(\\d{4})"); // find a date

// iterate over the days, months and years in the input
int const sub_matches[] = { 2, 1, 3 }; // day, month, year
sregex_token_iterator begin( input.begin(), input.end(), re, sub_matches ), end;

// write all the words to std::cout
std::ostream_iterator< std::string > out_iter( std::cout, "\n" );
std::copy( begin, end, out_iter );

This program displays the following:

02
01
2003
23
04
1999
13
11
1981

The sub_matches array instructs the regex_token_iterator<> to first take the value of the 2nd sub-match, then the 1st sub-match, and finally the 3rd. Incrementing the iterator again instructs it to use regex_search() again to find the next match. At that point, the process repeats -- the token iterator takes the value of the 2nd sub-match, then the 1st, et cetera.

Grammars and Nested Matches

Overview

One of the key benefits of representing regexes as C++ expressions is the ability to easily refer to other C++ code and data from within the regex. This enables programming idioms that are not possible with other regular expression libraries. Of particular note is the ability for one regex to refer to another regex, allowing you to build grammars out of regular expressions. This section describes how to embed one regex in another by value and by reference, how regex objects behave when they refer to other regexes, and how to access the tree of results after a successful parse.

Embedding a Regex by Value

The basic_regex<> object has value semantics. When a regex object appears on the right-hand side in the definition of another regex, it is as if the regex were embedded by value; that is, a copy of the nested regex is stored by the enclosing regex. The inner regex is invoked by the outer regex during pattern matching. The inner regex participates fully in the match, back-tracking as needed to make the match succeed.

Consider a text editor that has a regex-find feature with a whole-word option. You can implement this with xpressive as follows:

find_dialog dlg;
if( dialog_ok == dlg.do_modal() )
{
    std::string pattern = dlg.get_text();          // the pattern the user entered
    bool whole_word = dlg.whole_word.is_checked(); // did the user select the whole-word option?

    sregex re = sregex::compile( pattern );        // try to compile the pattern

    if( whole_word )
    {
        // wrap the regex in begin-word / end-word assertions
        re = bow >> re >> eow;
    }

    // ... use re ...
}

Look closely at this line:

// wrap the regex in begin-word / end-word assertions
re = bow >> re >> eow;

This line creates a new regex that embeds the old regex by value. Then, the new regex is assigned back to the original regex. Since a copy of the old regex was made on the right-hand side, this works as you might expect: the new regex has the behavior of the old regex wrapped in begin- and end-word assertions.

[Note] Note

Note that re=bow>>re>>eow does not define a recursive regular expression, since regex objects embed by value by default. The next section shows how to define a recursive regular expression by embedding a regex by reference.

Embedding a Regex by Reference

If you want to be able to build recursive regular expressions and context-free grammars, embedding a regex by value is not enough. You need to be able to make your regular expressions self-referential. Most regular expression engines don't give you that power, but xpressive does.

[Tip] Tip

The theoretical computer scientists out there will correctly point out that a self-referential regular expression is not "regular", so in the strict sense, xpressive isn't really a regular expression engine at all. But as Larry Wall once said, "the term [regular expression] has grown with the capabilities of our pattern matching engines, so I'm not going to try to fight linguistic necessity here."

Consider the following code, which uses the by_ref() helper to define a recursive regular expression that matches balanced, nested parentheses:

sregex parentheses;
parentheses                          // A balanced set of parentheses ...
    = '('                            // is an opening parenthesis ...
        >>                           // followed by ...
         *(                          // zero or more ...
            keep( +~(set='(',')') )  // of a bunch of things that are not parentheses ...
          |                          // or ...
            by_ref(parentheses)      // a balanced set of parentheses
          )                          //   (ooh, recursion!) ...
        >>                           // followed by ...
      ')'                            // a closing parenthesis
    ;

Matching balanced, nested tags is an important text processing task, and it is one that "classic" regular expressions cannot do. The by_ref() helper makes it possible. It allows one regex object to be embedded in another by reference. Since the right-hand side holds parentheses by reference, assigning the right-hand side back to parentheses creates a cycle, which will execute recursively.

Building a Grammar

Once we allow self-reference in our regular expressions, the genie is out of the bottle and all manner of fun things are possible. In particular, we can now build grammars out of regular expressions. Let's have a look at the text-book grammar example: the humble calculator.

sregex group, factor, term, expression;

group       = '(' >> by_ref(expression) >> ')';
factor      = +_d | group;
term        = factor >> *(('*' >> factor) | ('/' >> factor));
expression  = term >> *(('+' >> term) | ('-' >> term));

The regex expression defined above does something rather remarkable for a regular expression: it matches mathematical expressions. For example, if the input string were "foo 9*(10+3) bar", this pattern would match "9*(10+3)". It only matches well-formed mathematical expressions, where the parentheses are balanced and the infix operators have two arguments each. Don't try this with just any regular expression engine!

[Note] Note

There is no way for a dynamic regex to refer to other regexes, so they can only be used as terminals in a grammar. Use static regexes for non-terminal grammar rules.

Let's take a closer look at this regular expression grammar. Notice that it is cyclic: expression is implemented in terms of term, which is implemented in terms of factor, which is implemented in terms of group, which is implemented in terms of expression, closing the loop. In general, the way to define a cyclic grammar is to forward-declare the regex objects and embed by reference those regular expressions that have not yet been initialized. In the above grammar, there is only one place where we need to reference a regex object that has not yet been initialized: the definition of group. In that place, we use by_ref() to embed expression by reference. In all other places, it is sufficient to embed the other regex objects by value, since they have already been initialized and their values will not change.

[Tip] Tip

Embed by value if possible

In general, prefer embedding regular expressions by value rather than by reference. It involves one less indirection, making your patterns match a little faster. Besides, value semantics are simpler and will make your grammars easier to reason about. Don't worry about the expense of "copying" a regex. Each regex object shares its implementation with all of its copies.

Cyclic Patterns, Copying and Memory Management, Oh My!

The calculator example above raises a number of very complicated memory-management issues. Each of the four regex objects refer to each other, some directly and some indirectly, some by value and some by reference. What if we were to return one of them from a function and let the others go out of scope? What becomes of the references? The answer is that the regex objects are internally reference counted, such that they keep their referenced regex objects alive as long as they need them. So passing a regex object by value is never a problem, even if it refers to other regex objects that have gone out of scope.

Those of you who have dealt with reference counting are probably familiar with its Achilles Heel: cyclic references. If regex objects are reference counted, what happens to cycles like the one created in the calculator example? Are they leaked? The answer is no, they are not leaked. The basic_regex<> object has some tricky reference tracking code that ensures that even cyclic regex grammars are cleaned up when the last external reference goes away. So don't worry about it. Create cyclic grammars, pass your regex objects around and copy them all you want. It is fast and efficient and guaranteed not to leak or result in dangling references.

Nested Regexes and Sub-Match Scoping

Nested regular expressions raise the issue of sub-match scoping. If both the inner and outer regex write to and read from the same sub-match vector, chaos would ensue. The inner regex would stomp on the sub-matches written by the outer regex. For example, what does this do?

sregex inner = sregex::compile( "(.)\\1" );
sregex outer = (s1= _) >> inner >> s1;

The author probably didn't intend for the inner regex to overwrite the sub-match written by the outer regex. The problem is particularly acute when the inner regex is accepted from the user as input. The author has no way of knowing whether the inner regex will stomp the sub-match vector or not. This is clearly not acceptable.

Instead, what actually happens is that each invocation of a nested regex gets its own scope. Sub-matches belong to that scope. That is, each nested regex invocation gets its own copy of the sub-match vector to play with, so there is no way for an inner regex to stomp on the sub-matches of an outer regex. So, for example, the regex outer defined above would match "ABBA", as it should.

Nested Results

If nested regexes have their own sub-matches, there should be a way to access them after a successful match. In fact, there is. After a regex_match() or regex_search(), the match_results<> struct behaves like the head of a tree of nested results. The match_results<> class provides a nested_results() member function that returns an ordered sequence of match_results<> structures, representing the results of the nested regexes. The order of the nested results is the same as the order in which the nested regex objects matched.

Take as an example the regex for balanced, nested parentheses we saw earlier:

sregex parentheses;
parentheses = '(' >> *( keep( +~(set='(',')') ) | by_ref(parentheses) ) >> ')';

smatch what;
std::string str( "blah blah( a(b)c (c(e)f (g)h )i (j)6 )blah" );

if( regex_search( str, what, parentheses ) )
{
    // display the whole match
    std::cout << what[0] << '\n';

    // display the nested results
    std::for_each(
        what.nested_results().begin(),
        what.nested_results().end(),
        output_nested_results() );
}

This program displays the following:

( a(b)c (c(e)f (g)h )i (j)6 )
    (b)
    (c(e)f (g)h )
        (e)
        (g)
    (j)

Here you can see how the results are nested and that they are stored in the order in which they are found.

[Tip] Tip

See the definition of output_nested_results in the Examples section.

Filtering Nested Results

Sometimes a regex will have several nested regex objects, and you want to know which result corresponds to which regex object. That's where basic_regex<>::regex_id() and match_results<>::regex_id() come in handy. When iterating over the nested results, you can compare the regex id from the results to the id of the regex object you're interested in.

To make this a bit easier, xpressive provides a predicate to make it simple to iterate over just the results that correspond to a certain nested regex. It is called regex_id_filter_predicate, and it is intended to be used with Boost.Iterator. You can use it as follows:

sregex name = +alpha;
sregex integer = +_d;
sregex re = *( *_s >> ( name | integer ) ); 

smatch what;
std::string str( "marsha 123 jan 456 cindy 789" );

if( regex_match( str, what, re ) )
{
    smatch::nested_results_type::const_iterator begin = what.nested_results().begin();
    smatch::nested_results_type::const_iterator end   = what.nested_results().end();

    // declare filter predicates to select just the names or the integers
    sregex_id_filter_predicate name_id( name.regex_id() );
    sregex_id_filter_predicate integer_id( integer.regex_id() );

    // iterate over only the results from the name regex
    std::for_each(
        boost::make_filter_iterator( name_id, begin, end ),
        boost::make_filter_iterator( name_id, end, end ),
        output_result
        );

    std::cout << '\n';

    // iterate over only the results from the integer regex
    std::for_each(
        boost::make_filter_iterator( integer_id, begin, end ),
        boost::make_filter_iterator( integer_id, end, end ),
        output_result
        );
}

where output_results is a simple function that takes a smatch and displays the full match. Notice how we use the regex_id_filter_predicate together with basic_regex<>::regex_id() and boost::make_filter_iterator() from the Boost.Iterator to select only those results corresponding to a particular nested regex. This program displays the following:

marsha
jan
cindy
123
456
789

Localization and Regex Traits

Overview

Matching a regular expression against a string often requires locale-dependent information. For example, how are case-insensitive comparisons performed? The locale-sensitive behavior is captured in a traits class. xpressive provides three traits class templates: cpp_regex_traits<>, c_regex_traits<> and null_regex_traits<>. The first wraps a std::locale, the second wraps the global C locale, and the third is a stub traits type for use when searching non-character data. All traits templates conform to the Regex Traits Concept.

Setting the Default Regex Trait

By default, xpressive uses cpp_regex_traits<> for all patterns. This causes all regex objects to use the global std::locale. If you compile with BOOST_XPRESSIVE_USE_C_TRAITS defined, then xpressive will use c_regex_traits<> by default.

Using Custom Traits with Dynamic Regexes

To create a dynamic regex that uses a custom traits object, you must use regex_compiler<>. The basic steps are shown in the following example:

// Declare a regex_compiler that uses the global C locale
regex_compiler<char const *, c_regex_traits<char> > crxcomp;
cregex crx = crxcomp.compile( "\\w+" );

// Declare a regex_compiler that uses a custom std::locale
std::locale loc = /* ... create a locale here ... */;
regex_compiler<char const *, cpp_regex_traits<char> > cpprxcomp(loc);
cregex cpprx = cpprxcomp.compile( "\\w+" );

The regex_compiler objects act as regex factories. Once they have been imbued with a locale, every regex object they create will use that locale.

Using Custom Traits with Static Regexes

If you want a particular static regex to use a different set of traits, you can use the special imbue() pattern modifier. For instance:

// Define a regex that uses the global C locale
c_regex_traits<char> ctraits;
sregex crx = imbue(ctraits)( +_w );

// Define a regex that uses a customized std::locale
std::locale loc = /* ... create a locale here ... */;
cpp_regex_traits<char> cpptraits(loc);
sregex cpprx1 = imbue(cpptraits)( +_w );

// A sharthand for above
sregex cpprx2 = imbue(loc)( +_w );

The imbue() pattern modifier must wrap the entire pattern. It is an error to imbue only part of a static regex. For example:

// ERROR! Cannot imbue() only part of a regex
sregex error = _w >> imbue(loc)( _w );

Searching Non-Character Data With null_regex_traits

With xpressive static regexes, you are not limitted to searching for patterns in character sequences. You can search for patterns in raw bytes, integers, or anything that conforms to the Char Concept. The null_regex_traits<> makes it simple. It is a stub implementation of the Regex Traits Concept. It recognizes no character classes and does no case-sensitive mappings.

For example, with null_regex_traits<>, you can write a static regex to find a pattern in a sequence of integers as follows:

// some integral data to search
int const data[] = {0, 1, 2, 3, 4, 5, 6};

// create a null_regex_traits<> object for searching integers ...
null_regex_traits<int> nul;

// imbue a regex object with the null_regex_traits ...
basic_regex<int const *> rex = imbue(nul)(1 >> +((set= 2,3) | 4) >> 5);
match_results<int const *> what;

// search for the pattern in the array of integers ...
regex_search(data, data + 7, what, rex);

assert(what[0].matched);
assert(*what[0].first == 1);
assert(*what[0].second == 6);

Tips 'N Tricks

Squeeze the most performance out of xpressive with these tips and tricks.

Use Static Regexes

On average, static regexes execute about 10 to 15% faster than their dynamic counterparts. It's worth familiarizing yourself with the static regex dialect.

Reuse match_results<> Objects

The match_results<> object caches dynamically allocated memory. For this reason, it is far better to reuse the same match_results<> object if you have to do many regex searches.

Caveat: match_results<> objects are not thread-safe, so don't go wild reusing them across threads.

Prefer Algorithms That Take A match_results<> Object

This is a corollary to the previous tip. If you are doing multiple searches, you should prefer the regex algorithms that accept a match_results<> object over the ones that don't, and you should reuse the same match_results<> object each time. If you don't provide a match_results<> object, a temporary one will be created for you and discarded when the algorithm returns. Any memory cached in the object will be deallocated and will have to be reallocated the next time.

Prefer Algorithms That Accept Iterator Ranges Over Null-Terminated Strings

xpressive provides overloads of the regex_match() and regex_search() algorithms that operate on C-style null-terminated strings. You should prefer the overloads that take iterator ranges. When you pass a null-terminated string to a regex algorithm, the end iterator is calculated immediately by calling strlen. If you already know the length of the string, you can avoid this overhead by calling the regex algorithms with a [begin,end) pair.

Compile Patterns Once And Reuse Them

Compiling a regex (dynamic or static) is more expensive than executing a match or search. If you have the option, prefer to compile a pattern into a basic_regex<> object once and reuse it rather than recreating it over and over.

Understand syntax_option_type::optimize

The optimize flag tells the regex compiler to spend some extra time analyzing the pattern. It can cause some patterns to execute faster, but it increases the time to compile the pattern, and often increases the amount of memory consumed by the pattern. If you plan to reuse your pattern, optimize is usually a win. If you will only use the pattern once, don't use optimize.

Common Pitfalls

Keep the following tips in mind to avoid stepping in potholes with xpressive.

Create Grammars On A Single Thread

With static regexes, you can create grammars by nesting regexes inside one another. When compiling the outer regex, both the outer and inner regex objects, and all the regex objects to which they refer either directly or indirectly, are modified. For this reason, it's dangerous for global regex objects to participate in grammars. It's best to build regex grammars from a single thread. Once built, the resulting regex grammar can be executed from multiple threads without problems.

Beware Nested Quantifiers

This is a pitfall common to many regular expression engines. Some patterns can cause exponentially bad performance. Often these patterns involve one quantified term nested withing another quantifier, such as "(a*)*", although in many cases, the problem is harder to spot. Beware of patterns that have nested quantifiers.

Concepts

CharT requirements

If type BidiIterT is used as a template argument to basic_regex<>, then CharT is iterator_traits<BidiIterT>::value_type. Type CharT must have a trivial default constructor, copy constructor, assignment operator, and destructor. In addition the following requirements must be met for objects; c of type CharT, c1 and c2 of type CharTconst, and i of type int:

CharT Requirements

Expression Return type Assertion / Note / Pre- / Post-condition
CharTc CharT Default constructor (must be trivial).
CharTc(c1) CharT Copy constructor (must be trivial).
c1=c2 CharT Assignment operator (must be trivial).
c1==c2 bool true if c1 has the same value as c2.
c1!=c2 bool true if c1 and c2 are not equal.
c1<c2 bool true if the value of c1 is less than c2.
c1>c2 bool true if the value of c1 is greater than c2.
c1<=c2 bool true if c1 is less than or equal to c2.
c1>=c2 bool true if c1 is greater than or equal to c2.
intmax_ti=c1 int CharT must be convertible to an integral type.
CharTc(i); CharT CharT must be constructable from an integral type.

Traits Requirements

In the following table X denotes a traits class defining types and functions for the character container type CharT; u is an object of type X; v is an object of type constX; p is a value of type constCharT*; I1 and I2 are InputIterators; c is a value of type constCharT; s is an object of type X::string_type; cs is an object of type constX::string_type; b is a value of type bool; i is a value of type int; F1 and F2 are values of type constCharT*; loc is an object of type X::locale_type; and ch is an object of constchar.

Traits Requirements

Expression Return type Assertion / Note
Pre / Post condition
X::char_type CharT The character container type used in the implementation of class template basic_regex<>.
X::string_type std::basic_string<CharT> or std::vector<CharT>
X::locale_type Implementation defined A copy constructible type that represents the locale used by the traits class.
X::char_class_type Implementation defined A bitmask type representing a particular character classification. Multiple values of this type can be bitwise-or'ed together to obtain a new valid value.
X::hash(c) unsignedchar Yields a value between 0 and UCHAR_MAX inclusive.
v.widen(ch) CharT Widens the specified char and returns the resulting CharT.
v.in_range(r1,r2,c) bool For any characters r1 and r2, returns true if r1<=c&&c<=r2. Requires that r1<=r2.
v.in_range_nocase(r1,r2,c) bool For characters r1 and r2, returns true if there is some character d for which v.translate_nocase(d)==v.translate_nocase(c) and r1<=d&&d<=r2. Requires that r1<=r2.
v.translate(c) X::char_type Returns a character such that for any character d that is to be considered equivalent to c then v.translate(c)==v.translate(d).
v.translate_nocase(c) X::char_type For all characters C that are to be considered equivalent to c when comparisons are to be performed without regard to case, then v.translate_nocase(c)==v.translate_nocase(C).
v.transform(F1,F2) X::string_type Returns a sort key for the character sequence designated by the iterator range [F1,F2) such that if the character sequence [G1,G2) sorts before the character sequence [H1,H2) then v.transform(G1,G2)<v.transform(H1,H2).
v.transform_primary(F1,F2) X::string_type Returns a sort key for the character sequence designated by the iterator range [F1,F2) such that if the character sequence [G1,G2) sorts before the character sequence [H1,H2) when character case is not considered then v.transform_primary(G1,G2)<v.transform_primary(H1,H2).
v.lookup_classname(F1,F2) X::char_class_type Converts the character sequence designated by the iterator range [F1,F2) into a bitmask type that can subsequently be passed to isctype. Values returned from lookup_classname can be safely bitwise or'ed together. Returns 0 if the character sequence is not the name of a character class recognized by X. The value returned shall be independent of the case of the characters in the sequence.
v.lookup_collatename(F1,F2) X::string_type Returns a sequence of characters that represents the collating element consisting of the character sequence designated by the iterator range [F1,F2). Returns an empty string if the character sequence is not a valid collating element.
v.isctype(c,v.lookup_classname(F1,F2)) bool Returns true if character c is a member of the character class designated by the iterator range [F1,F2), false otherwise.
v.value(c,i) int Returns the value represented by the digit c in base i if the character c is a valid digit in base i; otherwise returns -1.
[Note: the value of i will only be 8, 10, or 16. -end note]
u.imbue(loc) X::locale_type Imbues u with the locale loc, returns the previous locale used by u.
v.getloc() X::locale_type Returns the current locale used by v.

Acknowledgements

This section is adapted from the equivalent page in the Boost.Regex documentation and from the proposal to add regular expressions to the Standard Library.

Examples

Below you can find six complete sample programs.

See if a whole string matches a regex

This is the example from the Introduction. It is reproduced here for your convenience.

#include <iostream>
#include <boost/xpressive/xpressive.hpp>

using namespace boost::xpressive;

int main()
{
    std::string hello( "hello world!" );

    sregex rex = sregex::compile( "(\\w+) (\\w+)!" );
    smatch what;

    if( regex_match( hello, what, rex ) )
    {
        std::cout << what[0] << '\n'; // whole match
        std::cout << what[1] << '\n'; // first capture
        std::cout << what[2] << '\n'; // second capture
    }

    return 0;
}

This program outputs the following:

hello world!
hello
world


top

See if a string contains a sub-string that matches a regex

Notice in this example how we use custom mark_tags to make the pattern more readable. We can use the mark_tags later to index into the match_results<>.

#include <iostream>
#include <boost/xpressive/xpressive.hpp>

using namespace boost::xpressive;

int main()
{
    char const *str = "I was born on 5/30/1973 at 7am.";

    // define some custom mark_tags with names more meaningful than s1, s2, etc.
    mark_tag day(1), month(2), year(3), delim(4);

    // this regex finds a date
    cregex date = (month= repeat<1,2>(_d))           // find the month ...
               >> (delim= (set= '/','-'))            // followed by a delimiter ...
               >> (day=   repeat<1,2>(_d)) >> delim  // and a day followed by the same delimiter ...
               >> (year=  repeat<1,2>(_d >> _d));    // and the year.

    cmatch what;

    if( regex_search( str, what, date ) )
    {
        std::cout << what[0]     << '\n'; // whole match
        std::cout << what[day]   << '\n'; // the day
        std::cout << what[month] << '\n'; // the month
        std::cout << what[year]  << '\n'; // the year
        std::cout << what[delim] << '\n'; // the delimiter
    }

    return 0;
}

This program outputs the following:

5/30/1973
30
5
1973
/


top

Replace all sub-strings that match a regex

The following program finds dates in a string and marks them up with pseudo-HTML.

#include <iostream>
#include <boost/xpressive/xpressive.hpp>

using namespace boost::xpressive;

int main()
{
    std::string str( "I was born on 5/30/1973 at 7am." );

    // essentially the same regex as in the previous example, but using a dynamic regex
    sregex date = sregex::compile( "(\\d{1,2})([/-])(\\d{1,2})\\2((?:\\d{2}){1,2})" );

    // As in Perl, $& is a reference to the sub-string that matched the regex
    std::string format( "<date>$&</date>" );

    str = regex_replace( str, date, format );
    std::cout << str << '\n';

    return 0;
}

This program outputs the following:

I was born on <date>5/30/1973</date> at 7am.


top

Find all the sub-strings that match a regex and step through them one at a time

The following program finds the words in a wide-character string. It uses wsregex_iterator. Notice that dereferencing a wsregex_iterator yields a wsmatch object.

#include <iostream>
#include <boost/xpressive/xpressive.hpp>

using namespace boost::xpressive;

int main()
{
    std::wstring str( L"This is his face." );

    // find a whole word
    wsregex token = +alnum;

    wsregex_iterator cur( str.begin(), str.end(), token );
    wsregex_iterator end;

    for( ; cur != end; ++cur )
    {
        wsmatch const &what = *cur;
        std::wcout << what[0] << L'\n';
    }

    return 0;
}

This program outputs the following:

This
is
his
face


top

Split a string into tokens that each match a regex

The following program finds race times in a string and displays first the minutes and then the seconds. It uses regex_token_iterator<>.

#include <iostream>
#include <boost/xpressive/xpressive.hpp>

using namespace boost::xpressive;

int main()
{
    std::string str( "Eric: 4:40, Karl: 3:35, Francesca: 2:32" );

    // find a race time
    sregex time = sregex::compile( "(\\d):(\\d\\d)" );

    // for each match, the token iterator should first take the value of
    // the first marked sub-expression followed by the value of the second
    // marked sub-expression
    int const subs[] = { 1, 2 };

    sregex_token_iterator cur( str.begin(), str.end(), time, subs );
    sregex_token_iterator end;

    for( ; cur != end; ++cur )
    {
        std::cout << *cur << '\n';
    }

    return 0;
}

This program outputs the following:

4
40
3
35
2
32


top

Split a string using a regex as a delimiter

The following program takes some text that has been marked up with html and strips out the mark-up. It uses a regex that matches an HTML tag and a regex_token_iterator<> that returns the parts of the string that do not match the regex.

#include <iostream>
#include <boost/xpressive/xpressive.hpp>

using namespace boost::xpressive;

int main()
{
    std::string str( "Now <bold>is the time <i>for all good men</i> to come to the aid of their</bold> country." );

    // find a HTML tag
    sregex html = '<' >> optional('/') >> +_w >> '>';

    // the -1 below directs the token iterator to display the parts of
    // the string that did NOT match the regular expression.
    sregex_token_iterator cur( str.begin(), str.end(), html, -1 );
    sregex_token_iterator end;

    for( ; cur != end; ++cur )
    {
        std::cout << '{' << *cur << '}';
    }
    std::cout << '\n';

    return 0;
}

This program outputs the following:

{Now }{is the time }{for all good men}{ to come to the aid of their}{ country.}


top

Display a tree of nested results

Here is a helper class to demonstrate how you might display a tree of nested results:

// Displays nested results to std::cout with indenting
struct output_nested_results
{
    int tabs_;

    output_nested_results( int tabs = 0 )
        : tabs_( tabs )
    {
    }

    template< typename BidiIterT >
    void operator ()( match_results< BidiIterT > const &what ) const
    {
        // first, do some indenting
        typedef typename std::iterator_traits< BidiIterT >::value_type char_type;
        char_type space_ch = char_type(' ');
        std::fill_n( std::ostream_iterator<char_type>( std::cout ), tabs_ * 4, space_ch );

        // output the match
        std::cout << what[0] << '\n';

        // output any nested matches
        std::for_each(
            what.nested_results().begin(),
            what.nested_results().end(),
            output_nested_results( tabs_ + 1 ) );
    }
};

top

Copyright 2003, 2004 Eric Niebler

PrevUpHomeNext